Automatisieren von Handelsstrategien in MQL5 (Teil 28): Erstellen eines Price Action Bat Harmonic Patterns mit visuellem Feedback
In diesem Artikel entwickeln wir ein Bat-Pattern-System in MQL5, das Auf- und Abwärtsmuster von Bat-Harmonic unter Verwendung von Umkehrpunkten und Fibonacci-Verhältnissen identifiziert und Handelsgeschäfte mit präzisen Einstiegs-, Stop-Loss- und Take-Profit-Levels auslöst, ergänzt durch visuelles Feedback durch Chart-Objekte
Einführung in MQL5 (Teil 20): Einführung in „Harmonic Patterns“
In diesem Artikel befassen wir uns mit den Grundlagen der harmonischen Muster, ihren Strukturen und ihrer Anwendung im Handel. Sie lernen etwas über Fibonacci-Retracements, Extensions und wie man die Erkennung harmonischer Muster in MQL5 implementiert, was die Grundlage für den Aufbau fortgeschrittener Handelswerkzeuge und Expert Advisors bildet.
Aufbau von KI-gestützten Handelssystemen in MQL5 (Teil 4): Überwindung mehrzeiliger Eingaben, Sicherstellung der Chat-Persistenz und Generierung von Signalen
In diesem Artikel erweitern wir das in ChatGPT integrierte Programm in MQL5, indem wir die Beschränkungen bei mehrzeiligen Eingaben durch eine verbesserte Textdarstellung überwinden, eine Seitenleiste für die Navigation im persistenten Chatspeicher mit AES256-Verschlüsselung und ZIP-Komprimierung einführen und erste Handelssignale durch die Integration von Chart-Daten erzeugen.
Entwicklung eines Replay-Systems (Teil 78): Neuer Chart Trade (V)
In diesem Artikel werden wir uns ansehen, wie ein Teil des Empfängercodes implementiert wird. Hier werden wir einen Expert Advisor implementieren, um zu testen und zu lernen, wie die Interaktion mit dem Protokoll funktioniert. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
Neuronale Netze im Handel: Ein hybrider Handelsrahmen mit prädiktiver Kodierung (letzter Teil)
Wir setzen unsere Untersuchung des hybriden Handelssystems StockFormer fort, das prädiktive Kodierungs- und Verstärkungslernalgorithmen für die Analyse von Finanzzeitreihen kombiniert. Das System basiert auf drei Transformer-Zweigen mit einem diversifizierten Mehrkopf-Aufmerksamkeitsmechanismus (DMH-Attn), der die Erfassung komplexer Muster und Abhängigkeiten zwischen Assets ermöglicht. Zuvor haben wir uns mit den theoretischen Aspekten des Frameworks vertraut gemacht und die DMH-Attn-Mechanismus implementiert. Heute werden wir über die Modellarchitektur und das Training sprechen.
Neuronale Netze im Handel: Modelle mit Wavelet-Transformation und Multitasking-Aufmerksamkeit
Wir laden Sie ein, einen Rahmen zu erkunden, der Wavelet-Transformationen und ein Multitasking-Selbstaufmerksamkeitsmodell kombiniert, um die Reaktionsfähigkeit und Genauigkeit von Prognosen unter volatilen Marktbedingungen zu verbessern. Die Wavelet-Transformation ermöglicht die Zerlegung der Renditen von Vermögenswerten in hohe und niedrige Frequenzen, wodurch langfristige Markttrends und kurzfristige Schwankungen sorgfältig erfasst werden.
Automatisieren von Handelsstrategien in MQL5 (Teil 36): Handel mit Angebot und Nachfrage mit Retest und Impulsmodell
In diesem Artikel erstellen wir ein Angebots- und Nachfragehandelssystem in MQL5, das Angebots- und Nachfragezonen durch Konsolidierungsbereiche identifiziert, sie mit impulsiven Bewegungen validiert und Retests mit Trendbestätigung und anpassbaren Risikoparametern handelt. Das System visualisiert die Zonen mit dynamischen Etiketten und Farben und unterstützt Trailing Stops für das Risikomanagement.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 84): Verwendung von Mustern des Stochastik-Oszillators und des FrAMA – Schlussfolgerung
Der Stochastik-Oszillator und der Fractal Adaptive Moving Average sind ein Indikatorpaar, das aufgrund seiner Fähigkeit, sich gegenseitig zu ergänzen, in einem MQL5 Expert Advisor verwendet werden kann. Wir haben diese Paarung im letzten Artikel vorgestellt und wollen nun abschließend ihre 5 letzten Signalmuster betrachten. Dabei verwenden wir wie immer den MQL5-Assistenten, um deren Potenzial zu erkunden und zu testen.
Statistische Arbitrage durch kointegrierte Aktien (Teil 4): Modellaktualisierung in Echtzeit
Dieser Artikel beschreibt eine einfache, aber umfassende statistische Arbitrage-Pipeline für den Handel mit einem Korb von kointegrierten Aktien. Es enthält ein voll funktionsfähiges Python-Skript zum Herunterladen und Speichern von Daten, Korrelations-, Kointegrations- und Stationaritätstests sowie eine Beispielimplementierung des Metatrader 5 Service zur Aktualisierung der Datenbank und des entsprechenden Expert Advisors. Einige Designentscheidungen werden hier zu Referenzzwecken und als Hilfe bei der Reproduktion des Experiments dokumentiert.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 80): Verwendung von Ichimoku-Muster und des ADX-Wilder mit TD3 Reinforcement Learning
Dieser Artikel schließt an Teil 74 an, in dem wir die Paarung von Ichimoku und ADX im Rahmen des überwachten Lernens untersuchten, und verlagert den Schwerpunkt auf das Bestärkende Lernen. Ichimoku und ADX bilden eine komplementäre Kombination von Unterstützungs-/Widerstandskartierung und Trendstärkemessung. In dieser Folge wird gezeigt, wie der Twin Delayed Deep Deterministic Policy Gradient (TD3) Algorithmus mit diesem Indikatorensatz verwendet werden kann. Wie bei früheren Teilen der Serie erfolgt die Implementierung in einer nutzerdefinierten Signalklasse, die für die Integration mit dem MQL5-Assistenten entwickelt wurde, was eine problemlose Zusammenstellung von Expert Advisors ermöglicht.
Einführung in MQL5 (Teil 22): Aufbau eines Expert Advisors für das harmonische Muster 5-0
Dieser Artikel erklärt, wie man das harmonische Muster 5-0 in MQL5 erkennt und handelt, es mit Hilfe von Fibonacci-Levels validiert und auf dem Chart anzeigt.
Selbstoptimierende Expert Advisors in MQL5 (Teil 14): Betrachtung von Datentransformationen als Tuning-Parameter unseres Feedback-Controllers
Die Vorverarbeitung ist ein leistungsstarker, aber schnell übersehener Tuning-Parameter. Es lebt im Schatten seiner größeren Brüder: Optimierer und glänzende Modellarchitekturen. Kleine prozentuale Verbesserungen können hier unverhältnismäßig große, sich verstärkende Auswirkungen auf Rentabilität und Risiko haben. Allzu oft wird diese weitgehend unerforschte Wissenschaft auf eine einfache Routine reduziert, die nur als Mittel zum Zweck gesehen wird, obwohl sie in Wirklichkeit der Ort ist, an dem ein Signal direkt verstärkt oder ebenso leicht zerstört werden kann.
Neuro-symbolische Systeme im algorithmischen Handel: Kombination von symbolischen Regeln und neuronalen Netzen
Der Artikel beschreibt die Erfahrungen bei der Entwicklung eines hybriden Handelssystems, das die klassische technische Analyse mit neuronalen Netzen kombiniert. Der Autor liefert eine detaillierte Analyse der Systemarchitektur, von der grundlegenden Musteranalyse und der Struktur des neuronalen Netzes bis hin zu den Mechanismen, die den Handelsentscheidungen zugrunde liegen, und stellt echten Code und praktische Beobachtungen vor.
Wiederverwendung von ungültig gemachten Orderblöcken als Mitigation Blocks (SMC)
In diesem Artikel untersuchen wir, wie zuvor für ungültig erklärte Orderblöcke als Mitigation Blocks innerhalb von Smart Money Concepts (SMC) wiederverwendet werden können. Diese Zonen zeigen, wo institutionelle Händler nach einer fehlgeschlagenen Auftragssperre wieder in den Markt einsteigen, und bieten Bereiche mit hoher Wahrscheinlichkeit für eine Fortsetzung des Handels im vorherrschenden Trend.
Aufbau von KI-gestützten Handelssystemen in MQL5 (Teil 3): Upgrade auf eine scrollbare, auf den Einzelchat ausgerichtete Nutzeroberfläche
In diesem Artikel aktualisieren wir das in ChatGPT integrierte Programm in MQL5 zu einer scrollbaren, auf einen einzelnen Chat ausgerichteten Nutzeroberfläche und verbessern die Anzeige des Gesprächsverlaufs mit Zeitstempeln und dynamischem Scrollen. Das System basiert auf JSON-Parsing, um Multi-Turn-Meldungen zu verwalten, und unterstützt anpassbare Modi der Schieberegler und Hover-Effekte für eine verbesserte Nutzerinteraktion.
Entwicklung eines Replay-Systems (Teil 77): Neuer Chart Trade (IV)
In diesem Artikel werden wir einige der Maßnahmen und Vorsichtsmaßnahmen behandeln, die bei der Erstellung eines Kommunikationsprotokolls zu beachten sind. Dies sind recht einfache und unkomplizierte Dinge, sodass wir in diesem Artikel nicht zu sehr ins Detail gehen werden. Aber um zu verstehen, was passieren wird, müssen Sie den Inhalt des Artikels verstehen.
Big Bang – Big Crunch (BBBC) Algorithmus
Der Artikel stellt die Methode Big Bang – Big Crunch vor, die aus zwei Schlüsselphasen besteht: zyklische Erzeugung von Zufallspunkten und deren Komprimierung zur optimalen Lösung. Dieser Ansatz kombiniert Erkundung und Verfeinerung und ermöglicht es uns, schrittweise bessere Lösungen zu finden und neue Optimierungsmöglichkeiten zu erschließen.
Entwicklung des Price Action Analysis Toolkit (Teil 42): Interaktive Chart-Prüfung mit Schaltflächenlogik und statistischen Ebenen
In einer Welt, in der es auf Geschwindigkeit und Präzision ankommt, müssen die Analysetools so intelligent sein wie die Märkte, auf denen wir handeln. In diesem Artikel wird ein EA vorgestellt, der auf der Logik von Schaltflächen basiert – ein interaktives System, das rohe Kursdaten sofort in aussagekräftige statistische Werte umwandelt. Mit einem einzigen Klick werden Mittelwert, Abweichung, Perzentile und vieles mehr berechnet und angezeigt, sodass fortschrittliche Analysen zu klaren Signalen auf dem Chart werden. Es hebt die Zonen hervor, in denen der Preis am wahrscheinlichsten abprallen, zurückgehen oder durchbrechen wird, was die Analyse sowohl schneller als auch praktischer macht.
Automatisieren von Handelsstrategien in MQL5 (Teil 29): Erstellung eines Preisaktionssystems mit dem harmonischen Muster von Gartley
In diesem Artikel entwickeln wir ein System des Gartley-Musters in MQL5, das harmonische Auf- und Abwärtsmuster von Gartley mit Hilfe von Umkehrpunkten und Fibonacci-Verhältnissen identifiziert und Handelsgeschäfte mit präzisen Einstiegs-, Stop-Loss- und Take-Profit-Levels ausführt. Wir verbessern den Einblick des Händlers mit visuellem Feedback durch Chart-Objekte wie Dreiecke, Trendlinien und Beschriftungen, um die XABCD-Musterstruktur klar darzustellen.
Automatisieren von Handelsstrategien in MQL5 (Teil 33): Erstellung des Preisaktions-Systems des harmonischen Musters Shark
In diesem Artikel entwickeln wir das System des Shark-Musters in MQL5, das steigende und fallende harmonische Shark-Muster unter Verwendung von Umkehrpunkten und Fibonacci-Ratios identifiziert und Handelsgeschäfte mit anpassbaren Einstiegs-, Stop-Loss- und Take-Profit-Levels basierend auf vom Nutzer ausgewählten Optionen ausführt. Wir verbessern den Einblick des Händlers mit visuellem Feedback durch Chart-Objekte wie Dreiecke, Trendlinien und Kennzeichnungen, um die X-A-B-C-D-Musterstruktur klar darzustellen.
Entwicklung des Price Action Analysis Toolkit (Teil 44): Aufbau eines VWMA Crossover Signal EA in MQL5
In diesem Artikel wird ein VWMA-Crossover-Signal für den MetaTrader 5 vorgestellt, das Händlern helfen soll, potenzielle Aufwärts- und Abwärtsbewegungen zu erkennen, indem es Preisbewegungen mit dem Handelsvolumen kombiniert. Der EA generiert klare Kauf- und Verkaufssignale direkt auf dem Chart, verfügt über ein informatives Panel und lässt sich vollständig an den Nutzer anpassen, was ihn zu einer praktischen Ergänzung Ihrer Handelsstrategie macht.
Entwicklung des Price Action Analysis Toolkit (Teil 46): Entwicklung eines interaktiven Fibonacci Retracement EA mit intelligenter Visualisierung in MQL5
Die Fibonacci-Instrumente gehören zu den beliebtesten Instrumenten der technischen Analysten. In diesem Artikel erstellen wir einen interaktiven Fibonacci-EA, der Retracement- und Extension-Ebenen zeichnet, die dynamisch auf Kursbewegungen reagieren und Echtzeitwarnungen, stilvolle Linien und eine scrollende Schlagzeile im Nachrichtenstil liefern. Ein weiterer wichtiger Vorteil dieses EAs ist die Flexibilität: Sie können die Werte für den höchsten (A) und den niedrigsten (B) Umkehrpunkt direkt im Chart manuell eingeben und haben so die genaue Kontrolle über den Marktbereich, den Sie analysieren möchten.
Automatisieren von Handelsstrategien in MQL5 (Teil 34): Trendline Breakout System mit R-Squared Goodness of Fit
In diesem Artikel entwickeln wir ein Trendlinen-Ausbruchssystem in MQL5, das Unterstützungs- und Widerstandstrendlinien mit Hilfe von Umkehrpunkte identifiziert, die durch die R-Quadrat-Anpassungsgüte und Winkelbeschränkungen validiert werden, um den Ausbruch-Handel zu automatisieren. Unser Plan ist es, innerhalb eines bestimmten Rückblickzeitraums hohe und tiefe Umkehrpunkte zu erkennen, Trendlinien mit einer Mindestanzahl von Berührungspunkten zu konstruieren und sie mithilfe von R-Quadrat-Metriken und Winkelbeschränkungen zu validieren, um Zuverlässigkeit zu gewährleisten.
Die Grenzen des maschinellen Lernens überwinden (Teil 5): Ein kurzer Überblick über die Kreuzvalidierung von Zeitreihen
In dieser Artikelserie befassen wir uns mit den Herausforderungen, denen sich algorithmische Händler beim Einsatz von auf maschinellem Lernen basierenden Handelsstrategien stellen müssen. Einige Herausforderungen innerhalb unserer Gemeinschaft bleiben unsichtbar, weil sie ein tieferes technisches Verständnis erfordern. Die heutige Diskussion dient als Sprungbrett, um die blinden Flecken der Kreuzvalidierung beim maschinellen Lernen zu untersuchen. Obwohl dieser Schritt oft als Routine behandelt wird, kann er bei unvorsichtiger Handhabung leicht zu irreführenden oder suboptimalen Ergebnissen führen. In diesem Artikel wird kurz auf die Grundlagen der Zeitreihen-Kreuzvalidierung eingegangen, um einen tieferen Einblick in ihre versteckten Schwachstellen zu ermöglichen.
Entwicklung des Price Action Analysis Toolkit (Teil 45): Erstellen eines dynamischen Level-Analyse-Panels in MQL5
In diesem Artikel stellen wir Ihnen ein leistungsstarkes MQL5-Tool vor, mit dem Sie jedes gewünschte Preisniveau mit nur einem Klick testen können. Geben Sie einfach das von Ihnen gewählte Niveau ein und drücken Sie auf „Analyze“. Der EA scannt sofort die historischen Daten, hebt jede Berührung und jeden Durchbruch im Chart hervor und zeigt die Statistiken in einem übersichtlichen Dashboard an. Sie werden genau sehen, wie oft der Kurs Ihr Niveau respektiert oder durchbrochen hat und ob es sich eher wie eine Unterstützung oder ein Widerstand verhielt. Lesen Sie weiter, um das genaue Verfahren zu erfahren.
Aufbau eines Handelssystems (Teil 4): Wie zufällige Ausstiege die Handelserwartung beeinflussen
Viele Händler haben diese Erfahrung gemacht, sie halten sich oft an ihre Einstiegskriterien, aber sie haben Probleme mit dem Handelsmanagement. Selbst bei den richtigen Setups können emotionale Entscheidungen – wie z. B. panische Ausstiege vor Erreichen des Take-Profit- oder Stop-Loss-Niveaus – zu einer fallenden Kapitalkurve führen. Wie können Händler dieses Problem lösen und ihre Ergebnisse verbessern? Dieser Artikel geht auf diese Fragen ein, indem er zufällige Gewinnraten untersucht und anhand von Monte-Carlo-Simulationen aufzeigt, wie Händler ihre Strategien verfeinern können, indem sie bei angemessenen Niveaus Gewinne mitnehmen, bevor das ursprüngliche Ziel erreicht ist.
Vom Neuling zum Experten: Backend Operations Monitor mit MQL5
Die Verwendung einer vorgefertigten Lösung im Handel, ohne sich mit der internen Funktionsweise des Systems zu befassen, mag zwar beruhigend klingen, doch ist dies für Entwickler nicht immer der Fall. Irgendwann tritt ein Upgrade, eine Leistungsstörung oder ein unerwarteter Fehler auf, und es ist wichtig, genau zu wissen, woher das Problem kommt, um es schnell zu diagnostizieren und zu beheben. Die heutige Diskussion konzentriert sich auf die Aufdeckung dessen, was normalerweise hinter den Kulissen eines Expert Advisors passiert, und auf die Entwicklung einer nutzerdefinierten Klasse für die Anzeige und Protokollierung von Backend-Prozessen mit MQL5. Dies gibt sowohl Entwicklern als auch Händlern die Möglichkeit, Fehler schnell zu lokalisieren, das Verhalten zu überwachen und auf spezifische Diagnoseinformationen für jeden EA zuzugreifen.
Statistische Arbitrage durch kointegrierte Aktien (Teil 5): Screening
In diesem Artikel wird ein Verfahren zum Screening von Vermögenswerten für eine statistische Arbitragestrategie durch kointegrierte Aktien vorgeschlagen. Das System beginnt mit der regulären Filterung nach wirtschaftlichen Faktoren, wie z. B. Vermögensbereich und Branche, und endet mit einer Liste von Kriterien für ein Scoring-System. Für jeden statistischen Test, der beim Screening verwendet wurde, wurde eine entsprechende Python-Klasse entwickelt: Pearson-Korrelation, Engle-Granger-Kointegration, Johansen-Kointegration und ADF/KPSS-Stationarität. Diese Python-Klassen werden zusammen mit einer persönlichen Anmerkung des Autors über den Einsatz von KI-Assistenten für die Softwareentwicklung bereitgestellt.
MQL5-Handelswerkzeuge (Teil 9): Entwicklung eines Ersteinrichtungsassistenten für Expert Advisors mit scrollbarem Leitfaden
In diesem Artikel entwickeln wir einen MQL5-Erstanwender-Setup-Assistenten für Expert Advisors mit einem scrollbaren Leitfaden mit interaktivem Dashboard, dynamischer Textformatierung und visuellen Steuerelementen wie Schaltflächen und Kontrollkästchen, die es dem Anwender ermöglichen, Anweisungen zu navigieren und Handelsparameter effizient zu konfigurieren. Die Nutzer des Programms erhalten einen Einblick in die Funktionsweise des Programms und in die ersten Schritte, die sie unternehmen müssen, ähnlich wie bei einem Orientierungsmodell.
Aufbau eines Handelssystems (Teil 5): Verwaltung von Gewinnen durch strukturierte Handelsausstiege
Für viele Händler ist es ein vertrauter Schmerzpunkt: zu sehen, wie ein Handel bis auf einen Hauch an Ihr Gewinnziel herankommt, nur um dann umzukehren und ihren Stop-Loss zu treffen. Oder noch schlimmer: Sie sehen, dass ein Trailing-Stop Sie an der Gewinnschwelle stoppt, bevor der Markt auf Ihr ursprüngliches Ziel zusteuert. Dieser Artikel befasst sich mit dem Einsatz mehrerer Einstiege zu unterschiedlichen Rendite-Risiko-Verhältnissen, um systematisch Gewinne zu sichern und das Gesamtrisiko zu reduzieren.
Dynamic Swing Architecture: Marktstrukturerkennung von Umkehrpunkten (Swings) bis zur automatisierten Ausführung
In diesem Artikel wird ein vollautomatisches MQL5-System vorgestellt, mit dem sich Marktschwankungen präzise erkennen und handeln lassen. Im Gegensatz zu herkömmlichen Umkehr-Indikatoren mit festen Balken passt sich dieses System dynamisch an die sich entwickelnde Preisstruktur an und erkennt hohe und tiefe Umkehrpunkte in Echtzeit, um Richtungsgelegenheiten zu nutzen, sobald sie sich bilden.
Entwicklung des Price Action Analysis Toolkit (Teil 47): Verfolgen von Forex-Sitzungen und Ausbrüchen in MetaTrader 5
Globale Marktsitzungen prägen den Rhythmus des Handelstages, und die Kenntnis ihrer Überschneidungen ist entscheidend für das Timing von Ein- und Ausstiegen. In diesem Artikel werden wir einen interaktiven EA für Handelssitzungen erstellen, der diese globalen Stunden direkt auf Ihrem Chart zum Leben erweckt. Der EA zeichnet automatisch farbcodierte Rechtecke für die Sitzungen in Asien, Tokio, London und New York, die in Echtzeit aktualisiert werden, sobald der jeweilige Markt eröffnet oder geschlossen wird. Sie verfügt über Schaltflächen auf dem Chart, ein dynamisches Informationspanel und eine Laufschrift, die Status- und Ausbruchsmeldungen live überträgt. Dieser bei verschiedenen Brokern getestete EA kombiniert Präzision mit Stil und hilft Händlern, Volatilitätsübergänge zu erkennen, sitzungsübergreifende Ausbrüche zu identifizieren und visuell mit dem Puls des globalen Marktes verbunden zu bleiben.
Einführung in MQL5 (Teil 23): Automatisieren der Opening Range Breakout Strategie
Dieser Artikel beschreibt, wie man einen Opening Range Breakout (ORB) Expert Advisor in MQL5 erstellt. Es wird erklärt, wie der EA Ausbrüche aus der anfänglichen Marktspanne identifiziert und dementsprechend Handelsgeschäfte eröffnet. Sie erfahren auch, wie Sie die Anzahl der geöffneten Positionen kontrollieren und eine bestimmte Endzeit festlegen können, um den Handel automatisch zu beenden.
Statistische Arbitrage durch kointegrierte Aktien (Teil 6): Bewertungssystem
In diesem Artikel schlagen wir ein Bewertungssystem für die Strategien der Rückkehr zum Mittelwert vor, das auf der statistischen Arbitrage von kointegrierten Aktien basiert. In dem Artikel werden Kriterien vorgeschlagen, die von der Liquidität und den Transaktionskosten bis zur Anzahl der Kointegrationsränge und der Zeit bis zur Umkehrung des Mittelwerts reichen, wobei die strategischen Kriterien der Datenhäufigkeit (Zeitrahmen) und des Rückblickzeitraums für die Kointegrationstests berücksichtigt werden, die vor der Bewertung der Rangfolge richtig bewertet werden. Die für die Reproduktion des Backtests erforderlichen Dateien werden zur Verfügung gestellt, und ihre Ergebnisse werden ebenfalls kommentiert.
Selbstoptimierende Expert Advisors in MQL5 (Teil 15): Identifizierung linearer Systeme
Es kann schwierig sein, Handelsstrategien zu verbessern, weil wir oft nicht ganz verstehen, was die Strategie falsch macht. In dieser Diskussion führen wir die lineare Systemidentifikation ein, ein Teilgebiet der Kontrolltheorie. Lineare Rückkopplungssysteme können aus Daten lernen, um die Fehler eines Systems zu erkennen und sein Verhalten auf die gewünschten Ergebnisse auszurichten. Auch wenn diese Methoden keine vollständig interpretierbaren Erklärungen liefern, sind sie doch weitaus wertvoller, als überhaupt kein Kontrollsystem zu haben. Lassen Sie uns die Identifizierung linearer Systeme untersuchen und beobachten, wie sie uns als algorithmische Händler helfen kann, die Kontrolle über unsere Handelsanwendungen zu behalten.
Einführung in MQL5 (Teil 24): Erstellen eines EAs, der mit Chart-Objekten handelt
In diesem Artikel erfahren Sie, wie Sie einen Expert Advisor erstellen, der auf dem Chart eingezeichnete Unterstützungs- und Widerstandszonen erkennt und darauf basierend automatisch Handelsgeschäfte ausführt.
MetaTrader 5 Machine Learning Blueprint (Teil 3): Methoden der Kennzeichnung von Trend-Scanning
Wir haben eine Pipline für eine robuste Eigenschaftsentwicklung entwickelt, die geeignete tick-basierte Balken verwendet, um Datenverluste zu vermeiden, und das kritische Problem der Kennzeichnung der meta-gekennzeichneten Signale des Triple-Barrier gelöst. Dieser Teil behandelt die fortgeschrittene Technik der Kennzeichnung, dem Trend-Scanning, für adaptive Horizonte. Nach der Erläuterung der Theorie wird anhand eines Beispiels gezeigt, wie Kennzeichnungen des Trend-Scanning mit Meta-Kennzeichen verwendet werden können, um die klassische Kreuzungsstrategie mit gleitendem Durchschnitt zu verbessern.
Einführung in MQL5 (Teil 25): Aufbau eines EAs, der mit Chart-Objekten handelt (II)
In diesem Artikel wird erklärt, wie man einen Expert Advisor (EA) erstellt, der mit Chart-Objekten, insbesondere Trendlinien, interagiert, um Ausbruchs- und Umkehrmöglichkeiten zu erkennen und zu handeln. Sie werden lernen, wie der EA gültige Signale bestätigt, die Handelsfrequenz verwaltet und die Konsistenz mit den vom Nutzer ausgewählten Strategien aufrechterhält.