Artikel über die Automatisierung von Handelssystemen in MQL5

icon

Lesen Sie Artikel über Handelssysteme, in denen unterschiedlichste Ideen vorgestellt sind. Sie erfahren, wie man   statistische Methoden und Muster auf japanischen Kerzen verwendet, wie man Signale filtern kann und wofür man Semaphor-Indikatoren braucht.

Mit dem Meister MQL5 lernen Sie, wie man einen Roboter ohne Programmieren zur schnellen Überprüfung von Handelsideen erstellen kann sowie was genetische Algorithmen sind.

Neuer Artikel
letzte | beste
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 63): Verwenden von Mustern der Kanäle von DeMarker und Envelope

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 63): Verwenden von Mustern der Kanäle von DeMarker und Envelope

Der DeMarker-Oszillator und der Envelope-Indikator sind Momentum- und Unterstützungs-/Widerstands-Tools, die bei der Entwicklung eines Expert Advisors kombiniert werden können. Wir prüfen daher Muster für Muster, was von Nutzen sein könnte und was möglicherweise zu vermeiden ist. Wir verwenden, wie immer, einen von einem Assistenten erstellten Expert Advisor zusammen mit den Funktionen der Musterverwendung, die in der Signalklasse des Expert Advisors integriert sind.
preview
MQL5-Handelswerkzeuge (Teil 2): Verbesserung des interaktiven Handelsassistenten durch dynamisches, visuelles Feedback

MQL5-Handelswerkzeuge (Teil 2): Verbesserung des interaktiven Handelsassistenten durch dynamisches, visuelles Feedback

In diesem Artikel aktualisieren wir unser Handelsassistenten-Tool durch Hinzufügen von Drag-and-Drop-Funktionen und Hover-Effekten, um die Oberfläche intuitiver und reaktionsschneller zu gestalten. Wir verfeinern das Tool zur Validierung von Echtzeit-Auftrags-Setups, um präzise Handelskonfigurationen im Verhältnis zu den Marktpreisen sicherzustellen. Wir führen auch Backtests dieser Verbesserungen durch, um ihre Zuverlässigkeit zu bestätigen.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 62): Nutzung der Muster von ADX und CCI mit Reinforcement-Learning TRPO

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 62): Nutzung der Muster von ADX und CCI mit Reinforcement-Learning TRPO

Der ADX-Oszillator und der CCI-Oszillator sind Trendfolge- und Momentum-Indikatoren, die bei der Entwicklung eines Expert Advisors miteinander kombiniert werden können. Wir machen dort weiter, wo wir im letzten Artikel aufgehört haben, indem wir untersuchen, wie das Training in der Praxis und die Aktualisierung unseres entwickelten Modells dank des Verstärkungslernens erfolgen kann. Wir verwenden einen Algorithmus, den wir in dieser Serie noch behandeln werden, die sogenannte Trusted Region Policy Optimization (Optimierung vertrauenswürdiger Regionen). Und wie immer erlaubt uns die Zusammenstellung von Expert Advisors durch den MQL5-Assistenten, unser(e) Modell(e) zum Testen viel schneller und auch so einzurichten, dass es mit verschiedenen Signaltypen verteilt und getestet werden kann.
preview
MQL5-Handelswerkzeuge (Teil 1): Aufbau eines interaktiven visuellen Handelsassistenten für schwebende Aufträge

MQL5-Handelswerkzeuge (Teil 1): Aufbau eines interaktiven visuellen Handelsassistenten für schwebende Aufträge

In diesem Artikel stellen wir die Entwicklung eines interaktiven Handelsassistenten in MQL5 vor, der die Platzierung schwebender Aufträge im Devisenhandel vereinfachen soll. Wir skizzieren das konzeptionelle Design und konzentrieren uns dabei auf eine nutzerfreundliche GUI für die visuelle Einstellung von Einstiegs-, Stop-Loss- und Take-Profit-Levels auf dem Chart. Darüber hinaus wird die MQL5-Implementierung und der Backtest-Prozess detailliert beschrieben, um die Zuverlässigkeit des Tools zu gewährleisten und die Voraussetzungen für die fortgeschrittenen Funktionen in den vorhergehenden Teilen zu schaffen.
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 61): Verwendung von ADX- und CCI-Mustern mit überwachtem Lernen

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 61): Verwendung von ADX- und CCI-Mustern mit überwachtem Lernen

Die Oszillatoren ADX und CCI sind Trendfolge- und Momentum-Indikatoren, die bei der Entwicklung eines Expert Advisors miteinander kombiniert werden können. Wir sehen uns an, wie dies durch die Verwendung aller 3 Haupttrainingsarten des maschinellen Lernens systematisiert werden kann. Die Wizard Assembled Expert Advisors ermöglichen es uns, die von diesen beiden Indikatoren dargestellten Muster zu bewerten, und wir beginnen damit, zu untersuchen, wie Supervised-Learning auf diese Muster angewendet werden kann.
preview
Fortgeschrittene Algorithmen für die Auftragsausführung in MQL5: TWAP, VWAP und Eisberg-Aufträge

Fortgeschrittene Algorithmen für die Auftragsausführung in MQL5: TWAP, VWAP und Eisberg-Aufträge

Ein MQL5-Framework, das den Algorithmus der Ausführung auf institutionellem Niveau (TWAP, VWAP, Iceberg) über einen einheitlichen Ausführungsmanager und einen Performance-Analysator für eine reibungslosere, präzisere Auftragsaufteilung und -analyse für Einzelhändler bereitstellt.
preview
Portfolio-Optimierung am Devisenmarkt: Synthese von VaR und die Markowitz-Theorie

Portfolio-Optimierung am Devisenmarkt: Synthese von VaR und die Markowitz-Theorie

Wie funktioniert der Portfoliohandel im Forexmarkt? Wie lassen sich die Portfoliotheorie von Markowitz zur Optimierung des Portfolioanteils und das VaR-Modell zur Optimierung des Portfoliorisikos zusammenführen? Wir erstellen einen auf der Portfoliotheorie basierenden Code, der einerseits ein geringes Risiko und andererseits eine akzeptable langfristige Rentabilität gewährleistet.
preview
Entwicklung eines Replay-Systems (Teil 76): Neuer Chart Trade (III)

Entwicklung eines Replay-Systems (Teil 76): Neuer Chart Trade (III)

In diesem Artikel werden wir uns ansehen, wie der Code von DispatchMessage, der im vorherigen Artikel fehlte, funktioniert. Wir werden das Thema des nächsten Artikels vorstellen. Aus diesem Grund ist es wichtig, die Funktionsweise dieses Codes zu verstehen, bevor wir zum nächsten Thema übergehen. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Expert Advisor auf der Grundlage des universellen MLP-Approximators

Expert Advisor auf der Grundlage des universellen MLP-Approximators

In diesem Artikel wird eine einfache und zugängliche Methode zur Verwendung eines neuronalen Netzwerks in einem Handels-EA vorgestellt, für die keine tiefgreifenden Kenntnisse des maschinellen Lernens erforderlich sind. Die Methode eliminiert die Zielfunktionsnormalisierung und überwindet die Probleme der „Gewichtsexplosion“ und des „Netzwerkstaus“, indem sie intuitives Training und visuelle Kontrolle der Ergebnisse bietet.
preview
Neuronale Netze im Handel: Parametereffizienter Transformer mit segmentierter Aufmerksamkeit (letzter Teil)

Neuronale Netze im Handel: Parametereffizienter Transformer mit segmentierter Aufmerksamkeit (letzter Teil)

In der vorangegangenen Arbeit haben wir die theoretischen Aspekte des PSformer-Rahmens erörtert, der zwei wichtige Neuerungen in der klassischen Transformer-Architektur beinhaltet: den Parameter-Shared (PS)-Mechanismus und die Berücksichtigung von räumlich-zeitlichen Segmenten (SegAtt). In diesem Artikel setzen wir die Arbeit fort, die wir bei der Implementierung der vorgeschlagenen Ansätze mit MQL5 begonnen haben.
preview
Neuronale Netze im Handel: Ein parameter-effizienter Transformer mit segmentierter Aufmerksamkeit (PSformer)

Neuronale Netze im Handel: Ein parameter-effizienter Transformer mit segmentierter Aufmerksamkeit (PSformer)

In diesem Artikel wird das neue PSformer-Framework vorgestellt, das die Architektur des einfachen Transformers an die Lösung von Problemen im Zusammenhang mit multivariaten Zeitreihenprognosen anpasst. Der Rahmen basiert auf zwei wichtigen Innovationen: dem Parameter-Sharing-Mechanismus (PS) und der Segment Attention (SegAtt).
preview
Zyklen im Handel

Zyklen im Handel

In diesem Artikel geht es um die Verwendung von Zyklen im Handel. Wir werden den Aufbau einer Handelsstrategie auf der Grundlage zyklischer Modelle in Betracht ziehen.
preview
Neuronale Netze im Handel: Verbesserung des Wirkungsgrads des Transformers durch Verringerung der Schärfe (SAMformer)

Neuronale Netze im Handel: Verbesserung des Wirkungsgrads des Transformers durch Verringerung der Schärfe (SAMformer)

Das Training von Transformer-Modellen erfordert große Datenmengen und ist oft schwierig, da die Modelle nicht gut auf kleine Datensätze verallgemeinert werden können. Der SAMformer-Rahmen hilft bei der Lösung dieses Problems, indem er schlechte lokale Minima vermeidet. Dadurch wird die Effizienz der Modelle auch bei begrenzten Trainingsdaten verbessert.
preview
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 20): Ordnung in den Ablauf der automatischen Projektoptimierungsphasen bringen (I)

Entwicklung eines Expert Advisors für mehrere Währungen (Teil 20): Ordnung in den Ablauf der automatischen Projektoptimierungsphasen bringen (I)

Wir haben bereits eine ganze Reihe von Komponenten entwickelt, die bei der automatischen Optimierung helfen. Bei der Erstellung folgten wir der traditionellen zyklischen Struktur: von der Erstellung eines minimalen funktionierenden Codes bis hin zum Refactoring und dem Erhalt eines verbesserten Codes. Es ist an der Zeit, mit dem Aufräumen unserer Datenbank zu beginnen, die auch eine Schlüsselkomponente in dem von uns geschaffenen System ist.
preview
Neuronale Netze im Handel: Optimierung des Transformers für Zeitreihenprognosen (LSEAttention)

Neuronale Netze im Handel: Optimierung des Transformers für Zeitreihenprognosen (LSEAttention)

Der LSEAttention-Rahmen bietet Verbesserungen der Transformer-Architektur. Es wurde speziell für langfristige multivariate Zeitreihenprognosen entwickelt. Die von den Autoren der Methode vorgeschlagenen Ansätze können angewandt werden, um Probleme des Entropiekollapses und der Lerninstabilität zu lösen, die bei einem einfachen Transformer häufig auftreten.
preview
Neuronale Netze im Handel: Hyperbolisches latentes Diffusionsmodell (letzter Teil)

Neuronale Netze im Handel: Hyperbolisches latentes Diffusionsmodell (letzter Teil)

Die Verwendung anisotroper Diffusionsprozesse zur Kodierung der Ausgangsdaten in einem hyperbolischen latenten Raum, wie sie im HypDIff-Rahmen vorgeschlagen wird, trägt dazu bei, die topologischen Merkmale der aktuellen Marktsituation zu erhalten und verbessert die Qualität der Analyse. Im vorigen Artikel haben wir damit begonnen, die vorgeschlagenen Ansätze mit MQL5 zu implementieren. Heute werden wir die begonnene Arbeit fortsetzen und zu ihrem logischen Abschluss bringen.
preview
Nichtlineare Regressionsmodelle an der Börse

Nichtlineare Regressionsmodelle an der Börse

Nichtlineare Regressionsmodelle an der Börse: Ist es möglich, die Finanzmärkte vorherzusagen? Betrachten wir die Erstellung eines Modells für die Vorhersage der Preise für EURUSD, und machen zwei Roboter auf der Grundlage - in Python und MQL5.
preview
Neuronale Netze im Handel: Hyperbolisches latentes Diffusionsmodell (HypDiff)

Neuronale Netze im Handel: Hyperbolisches latentes Diffusionsmodell (HypDiff)

Der Artikel befasst sich mit Methoden zur Kodierung von Ausgangsdaten im hyperbolischen latenten Raum durch anisotrope Diffusionsprozesse. Dies trägt dazu bei, die topologischen Merkmale der aktuellen Marktsituation genauer zu erfassen und die Qualität der Analyse zu verbessern.
preview
Arithmetischer Optimierungsalgorithmus (AOA): Von AOA zu SOA (Simpler Optimierungsalgorithmus)

Arithmetischer Optimierungsalgorithmus (AOA): Von AOA zu SOA (Simpler Optimierungsalgorithmus)

In diesem Artikel stellen wir den Arithmetischen Optimierungsalgorithmus (AOA) vor, der auf einfachen arithmetischen Operationen basiert: Addition, Subtraktion, Multiplikation und Division. Diese grundlegenden mathematischen Operationen dienen als Grundlage für die Suche nach optimalen Lösungen für verschiedene Probleme.
preview
Volumetrische neuronale Netzwerkanalyse als Schlüssel zu zukünftigen Trends

Volumetrische neuronale Netzwerkanalyse als Schlüssel zu zukünftigen Trends

Der Artikel untersucht die Möglichkeit, die Preisprognose auf der Grundlage der Analyse des Handelsvolumens zu verbessern, indem die Prinzipien der technischen Analyse mit der Architektur des neuronalen Netzes LSTM integriert werden. Besonderes Augenmerk wird auf die Erkennung und Interpretation anomaler Volumina, die Verwendung von Clustern und die Erstellung von Merkmalen auf der Grundlage von Volumina und deren Definition im Rahmen des maschinellen Lernens gelegt.
preview
Schneller Handelsstrategie-Tester in Python mit Numba

Schneller Handelsstrategie-Tester in Python mit Numba

Der Artikel implementiert einen schnellen Strategietester für maschinelle Lernmodelle unter Verwendung von Numba. Das ist 50 Mal schneller als der reine Python-Strategie-Tester. Der Autor empfiehlt die Verwendung dieser Bibliothek, um mathematische Berechnungen zu beschleunigen, insbesondere solche, die Schleifen beinhalten.
preview
Der Algorithmus Atomic Orbital Search (AOS) Modifizierung

Der Algorithmus Atomic Orbital Search (AOS) Modifizierung

Im zweiten Teil des Artikels werden wir die Entwicklung einer modifizierten Version des AOS-Algorithmus (Atomic Orbital Search) fortsetzen und uns dabei auf bestimmte Operatoren konzentrieren, um seine Effizienz und Anpassungsfähigkeit zu verbessern. Nach einer Analyse der Grundlagen und der Mechanik des Algorithmus werden wir Ideen zur Verbesserung seiner Leistung und seiner Fähigkeit, komplexe Lösungsräume zu analysieren, diskutieren und neue Ansätze zur Erweiterung seiner Funktionalität als Optimierungswerkzeug vorschlagen.
preview
Neuronale Netze im Handel: Direktionale Diffusionsmodelle (DDM)

Neuronale Netze im Handel: Direktionale Diffusionsmodelle (DDM)

In diesem Artikel werden gerichtete Diffusionsmodelle diskutiert, die datenabhängiges anisotropes und gerichtetes Rauschen in einem Vorwärtsdiffusionsprozess ausnutzen, um aussagekräftige Graphendarstellungen zu erfassen.
preview
Entwicklung fortschrittlicher ICT-Handelssysteme: Implementierung von Orderblöcken in einem Indikator

Entwicklung fortschrittlicher ICT-Handelssysteme: Implementierung von Orderblöcken in einem Indikator

In diesem Artikel erfahren Sie, wie Sie einen Indikator erstellen, der die Abschwächung von Orderblöcken erkennt, zeichnet und Alarm schlägt. Wir werden auch einen detaillierten Blick darauf werfen, wie man diese Blöcke auf dem Chart identifiziert, genaue Alarme setzt und ihre Position mit Hilfe von Rechtecken visualisiert, um die Preisaktion besser zu verstehen. Dieser Indikator ist ein wichtiges Instrument für Händler, die den Smart Money Concepts und der Inner Circle Trader-Methode folgen.
preview
Neuronale Netze im Handel: Knotenadaptive Graphendarstellung mit NAFS

Neuronale Netze im Handel: Knotenadaptive Graphendarstellung mit NAFS

Wir laden Sie ein, sich mit der NAFS-Methode (Node-Adaptive Feature Smoothing) vertraut zu machen, einem nicht-parametrischen Ansatz zur Erstellung von Knotenrepräsentationen, der kein Parametertraining erfordert. NAFS extrahiert Merkmale jedes Knotens anhand seiner Nachbarn und kombiniert diese Merkmale dann adaptiv, um eine endgültige Darstellung zu erstellen.
preview
Neuronale Netze im Handel: Der Contrastive Muster-Transformer (letzter Teil)

Neuronale Netze im Handel: Der Contrastive Muster-Transformer (letzter Teil)

Im letzten Artikel dieser Reihe haben wir uns mit dem Atom-Motif Contrastive Transformer (AMCT) beschäftigt, der kontrastives Lernen zur Entdeckung von Schlüsselmustern auf allen Ebenen einsetzt, von grundlegenden Elementen bis hin zu komplexen Strukturen. In diesem Artikel setzen wir die Implementierung von AMCT-Ansätzen mit MQL5 fort.
preview
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 19): In Python implementierte Stufen erstellen

Entwicklung eines Expert Advisors für mehrere Währungen (Teil 19): In Python implementierte Stufen erstellen

Bisher haben wir die Automatisierung des Starts von sequentiellen Verfahren zur Optimierung von EAs ausschließlich im Standard-Strategietester betrachtet. Was aber, wenn wir zwischen diesen Starts die gewonnenen Daten mit anderen Mitteln bearbeiten wollen? Wir werden versuchen, die Möglichkeit hinzuzufügen, neue Optimierungsstufen zu erstellen, die von in Python geschriebenen Programmen ausgeführt werden.
preview
Neuronale Netze im Handel: Der Contrastive Muster-Transformer

Neuronale Netze im Handel: Der Contrastive Muster-Transformer

Der Contrastive Transformer wurde entwickelt, um Märkte sowohl auf der Ebene einzelner Kerzen als auch auf der Basis ganzer Muster zu analysieren. Dies trägt dazu bei, die Qualität der Modellierung von Markttrends zu verbessern. Darüber hinaus fördert der Einsatz des kontrastiven Lernens zum Abgleich der Darstellungen von Kerzen und Mustern die Selbstregulierung und verbessert die Genauigkeit der Prognosen.
preview
Neuronale Netze im Handel: Transformer mit relativer Kodierung

Neuronale Netze im Handel: Transformer mit relativer Kodierung

Selbstüberwachtes Lernen kann ein effektives Mittel sein, um große Mengen ungekennzeichneter Daten zu analysieren. Die Effizienz wird durch die Anpassung der Modelle an die spezifischen Merkmale der Finanzmärkte gewährleistet, was zur Verbesserung der Wirksamkeit der traditionellen Methoden beiträgt. In diesem Artikel wird ein alternativer Aufmerksamkeitsmechanismus vorgestellt, der die relativen Abhängigkeiten und Beziehungen zwischen den Eingaben berücksichtigt.
preview
Neuronale Netze im Handel: Marktanalyse mit Hilfe eines Muster-Transformers

Neuronale Netze im Handel: Marktanalyse mit Hilfe eines Muster-Transformers

Wenn wir Modelle zur Analyse der Marktsituation verwenden, konzentrieren wir uns hauptsächlich auf Kerzen. Es ist doch seit langem bekannt, dass Kerzen-Muster bei der Vorhersage künftiger Kursbewegungen helfen können. In diesem Artikel werden wir uns mit einer Methode vertraut machen, die es uns ermöglicht, diese beiden Ansätze zu integrieren.
preview
Neuronale Netze im Handel: Kontrollierte Segmentierung

Neuronale Netze im Handel: Kontrollierte Segmentierung

In diesem Artikel wird eine Methode zur Analyse komplexer multimodaler Interaktionen und zum Verstehen von Merkmalen erörtert.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 60): Inferenzlernen (Wasserstein-VAE) mit gleitendem Durchschnitt und stochastischen Oszillatormustern

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 60): Inferenzlernen (Wasserstein-VAE) mit gleitendem Durchschnitt und stochastischen Oszillatormustern

Wir schließen unsere Betrachtung der komplementären Paarung von MA und stochastischem Oszillator ab, indem wir untersuchen, welche Rolle das Inferenzlernen in einer Situation nach überwachtem Lernen und Verstärkungslernen spielen kann. Es gibt natürlich eine Vielzahl von Möglichkeiten, wie man in diesem Fall das Inferenzlernen angehen kann, unser Ansatz ist jedoch die Verwendung von Variationsautokodierern. Wir untersuchen dies in Python, bevor wir unser trainiertes Modell mit ONNX exportieren, um es in einem von einem Assistenten zusammengestellten Expert Advisor in MetaTrader zu verwenden.
preview
Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 2): Expert Advisor

Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 2): Expert Advisor

Dieser Artikel beschreibt den Aufbau eines adaptiven Expert Advisors (MarketRegimeEA) unter Verwendung des Regime-Detektors aus Teil 1. Er wechselt automatisch die Handelsstrategien und Risikoparameter für steigende, volatile oder Seitwärtsmärkte. Praktische Optimierung, Handhabung von Übergängen und ein Indikator für mehrere Zeitrahmen sind enthalten.
preview
Datenwissenschaft und ML (Teil 37): Mit Kerzenmustern und AI den Markt schlagen

Datenwissenschaft und ML (Teil 37): Mit Kerzenmustern und AI den Markt schlagen

Kerzenmuster helfen Händlern, die Marktpsychologie zu verstehen und Trends auf den Finanzmärkten zu erkennen. Sie ermöglichen fundiertere Handelsentscheidungen, die zu besseren Ergebnissen führen können. In diesem Artikel werden wir untersuchen, wie man Kerzenmuster mit KI-Modellen nutzen kann, um eine optimale Handelsperformance zu erzielen.
preview
Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 1): Der Indikator

Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 1): Der Indikator

Dieser Artikel beschreibt die Erstellung eines MQL5-Systems zur Erkennung von Marktregimen unter Verwendung statistischer Methoden wie Autokorrelation und Volatilität. Es enthält Code für Klassen zur Klassifizierung von Trend-, Spannen- und Volatilitätsbedingungen sowie einen nutzerdefinierten Indikator.
preview
Datenwissenschaft und ML (Teil 36): Der Umgang mit verzerrten Finanzmärkten

Datenwissenschaft und ML (Teil 36): Der Umgang mit verzerrten Finanzmärkten

Die Finanzmärkte sind nicht vollkommen ausgeglichen. Einige Märkte steigen, andere fallen, und wieder andere zeigen ein gewisses Schwankungsverhalten, das auf Unsicherheit in beide Richtungen hindeutet. Diese unausgewogenen Informationen können beim Trainieren von Machine-Learning-Modellen irreführend sein, da sich die Märkte häufig ändern. In diesem Artikel werden wir verschiedene Möglichkeiten erörtern, dieses Problem zu lösen.
preview
Erstellen von dynamischen MQL5-Grafikschnittstellen durch ressourcengesteuerte Bildskalierung mit bikubischer Interpolation auf Handelscharts

Erstellen von dynamischen MQL5-Grafikschnittstellen durch ressourcengesteuerte Bildskalierung mit bikubischer Interpolation auf Handelscharts

In diesem Artikel erforschen wir dynamische MQL5-Grafikschnittstellen, die bikubische Interpolation für hochwertige Bildskalierung auf Handelscharts verwenden. Wir stellen flexible Positionierungsoptionen vor, die eine dynamische Zentrierung oder Eckverankerung mit nutzerdefinierten Versätzen ermöglichen.
preview
Dekodierung von Intraday-Handelsstrategien des Opening Range Breakout

Dekodierung von Intraday-Handelsstrategien des Opening Range Breakout

Die Strategien des Opening Range Breakout (ORB) basieren auf der Idee, dass die erste Handelsspanne, die sich kurz nach der Markteröffnung bildet, wichtige Preisniveaus widerspiegelt, bei denen sich Käufer und Verkäufer auf einen Wert einigen. Durch die Identifizierung von Ausbrüchen über oder unter einer bestimmten Spanne können Händler von der Dynamik profitieren, die oft folgt, wenn die Marktrichtung klarer wird. In diesem Artikel werden wir drei ORB-Strategien untersuchen, die von der Concretum Group übernommen wurden.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 16): Midnight Range Breakout mit der Preisaktion Break of Structure (BoS)

Automatisieren von Handelsstrategien in MQL5 (Teil 16): Midnight Range Breakout mit der Preisaktion Break of Structure (BoS)

In diesem Artikel automatisieren wir die Midnight Range Breakout mit Break of Structure Strategie in MQL5, indem wir den Code für die Breakout-Erkennung und die Handelsausführung detailliert beschreiben. Wir definieren präzise Risikoparameter für Einstieg, Stopp und Gewinn. Backtests und Optimierung sind für den praktischen Handel enthalten.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 15): Price Action Harmonic Cypher Pattern mit Visualisierung

Automatisieren von Handelsstrategien in MQL5 (Teil 15): Price Action Harmonic Cypher Pattern mit Visualisierung

In diesem Artikel befassen wir uns mit der Automatisierung des harmonischen Cypher-Musters in MQL5 und erläutern seine Erkennung und Visualisierung auf MetaTrader 5-Charts. Wir implementieren einen Expert Advisor, der Umkehrpunkte identifiziert, Fibonacci-basierte Muster validiert und Handelsgeschäfte mit klaren grafischen Kommentaren ausführt. Der Artikel schließt mit einer Anleitung zu den Backtests und zur Optimierung des Programms für einen effektiven Handel.