
Entwicklung eines Replay Systems (Teil 43): Chart Trader Projekt (II)
Die meisten Menschen, die programmieren lernen wollen oder davon träumen, haben eigentlich keine Ahnung, was sie da tun. Ihre Tätigkeit besteht darin, dass sie versuchen, Dinge auf eine bestimmte Art und Weise zu schaffen. Bei der Programmierung geht es jedoch nicht darum, geeignete Lösungen zu finden. Auf diese Weise können mehr Probleme als Lösungen entstehen. Hier werden wir etwas Fortgeschritteneres und daher etwas anderes machen.

Algorithmen zur Optimierung mit Populationen: Harmonie-Suche (HS)
In diesem Artikel werde ich den leistungsstärksten Optimierungsalgorithmus untersuchen und testen - die Harmonie-Suche (HS), inspiriert durch den Prozess der Suche nach der perfekten Klangharmonie. Welcher Algorithmus ist nun der führende in unserer Bewertung?

Algorithmen zur Optimierung mit Populationen: Algorithmus des Mind Evolutionary Computation (MEC)
Der Artikel befasst sich mit einem Algorithmus aus der MEC-Familie, dem Simple Mind Evolutionary Computation Algorithmus (Simple MEC, SMEC). Der Algorithmus zeichnet sich durch die Schönheit seiner Idee und die Einfachheit seiner Umsetzung aus.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 10). Die unkonventionelle RBM
Restriktive Boltzmann-Maschinen (RBM) sind im Grunde genommen ein zweischichtiges neuronales Netz, das durch Dimensionsreduktion eine unbeaufsichtigte Klassifizierung ermöglicht. Wir nehmen die Grundprinzipien und untersuchen, ob wir durch eine unorthodoxe Umgestaltung und ein entsprechendes Training einen nützlichen Signalfilter erhalten können.

Datenwissenschaft und maschinelles Lernen (Teil 20): Algorithmische Handelseinblicke, eine Gegenüberstellung von LDA und PCA in MQL5
Entdecken Sie die Geheimnisse dieser leistungsstarken Dimensionsreduktionstechniken, indem wir ihre Anwendungen in der MQL5-Handelsumgebung analysieren. Vertiefen Sie sich in die Feinheiten der linearen Diskriminanzanalyse (LDA) und der Hauptkomponentenanalyse (PCA) und gewinnen Sie ein tiefes Verständnis für deren Auswirkungen auf die Strategieentwicklung und Marktanalyse,

Schildkrötenpanzer-Evolutionsalgorithmus (TSEA)
Dies ist ein einzigartiger Optimierungsalgorithmus, der von der Evolution des Schildkrötenpanzers inspiriert wurde. Der TSEA-Algorithmus emuliert die allmähliche Bildung keratinisierter Hautbereiche, die optimale Lösungen für ein Problem darstellen. Die besten Lösungen werden „härter“ und befinden sich näher an der Außenfläche, während die weniger erfolgreichen Lösungen „weicher“ bleiben und sich im Inneren befinden. Der Algorithmus verwendet eine Gruppierung der Lösungen nach Qualität und Entfernung, wodurch weniger erfolgreiche Optionen erhalten bleiben und Flexibilität und Anpassungsfähigkeit gewährleistet werden.

Einführung in MQL5 (Teil 10): Eine Anleitung für Anfänger zur Arbeit mit den integrierten Indikatoren in MQL5
Dieser Artikel führt in die Arbeit mit integrierten Indikatoren in MQL5 ein und konzentriert sich auf die Erstellung eines RSI-basierten Expert Advisors (EA) mit einem projektbasierten Ansatz. Sie werden lernen, RSI-Werte abzurufen und zu nutzen, Liquiditätsdurchbrüche zu handhaben und die Handelsvisualisierung mit Chart-Objekten zu verbessern. Darüber hinaus wird in dem Artikel ein wirksames Risikomanagement hervorgehoben, einschließlich der Festlegung eines prozentualen Risikos, der Umsetzung von Risiko-Ertrags-Verhältnissen und der Anwendung von Risikomodifikationen zur Sicherung von Gewinnen.

DoEasy. Steuerung (Teil 12): WinForms-Objekte Basislistenobjekt, ListBox und ButtonListBox
In diesem Artikel werde ich das Basisobjekt der WinForms-Objektlisten sowie die beiden neuen Objekte erstellen: ListBox und ButtonListBox.

Datenwissenschaft und maschinelles Lernen (Teil 24): Zeitreihenprognose im Forex mit regulären AI-Modellen
Auf den Devisenmärkten ist es sehr schwierig, den zukünftigen Trend vorherzusagen, ohne eine Vorstellung von der Vergangenheit zu haben. Nur sehr wenige maschinelle Lernmodelle sind in der Lage, Vorhersagen zu treffen, indem sie vergangene Werte berücksichtigen. In diesem Artikel werden wir erörtern, wie wir klassische (Nicht-Zeitreihen-) Modelle der Künstlichen Intelligenz nutzen können, um den Markt zu schlagen

Chaostheorie im Handel (Teil 2): Tiefer tauchen
Wir setzen unsere Untersuchung der Chaostheorie auf den Finanzmärkten fort. Dieses Mal werde ich seine Anwendbarkeit auf die Analyse von Währungen und anderen Vermögenswerten untersuchen.


Grafiken in der DoEasy-Bibliothek (Teil 92): Speicherklasse der grafischen Standardobjekte. Änderungsverlauf der Objekteigenschaften
In diesem Artikel werde ich die Speicherklasse der grafischen Standardobjekte erstellen, die es dem Objekt ermöglicht, seine Zustände zu speichern, wenn seine Eigenschaften geändert werden. Dies wiederum ermöglicht den Rücksprung zu vorherigen Zuständen des grafischen Objekts.

Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 7): Signale von ZigZag und dem Awesome Oszillator
Der Multi-Currency Expert Advisor in diesem Artikel ist ein Expert Advisor für den automatisierten Handel, der den ZigZag-Indikator und den Awesome Oscillator als Signale verwendet.

Selbstoptimierender Expert Advisor mit MQL5 und Python (Teil III): Den Boom-1000-Algorithmus knacken
In dieser Artikelserie erörtern wir, wie wir Expert Advisors entwickeln können, die sich selbständig an dynamische Marktbedingungen anpassen. Im heutigen Artikel werden wir versuchen, ein tiefes neuronales Netz auf die synthetischen Märkte von Derivativen abzustimmen.

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 38): Bollinger Bands
Bollinger Bänder sind ein sehr gebräuchlicher Hüllkurven-Indikator, der von vielen Händlern verwendet wird, um Trades manuell zu platzieren und zu schließen. Wir untersuchen diesen Indikator, indem wir möglichst viele der verschiedenen möglichen Signale betrachten, die er erzeugt, und sehen, wie sie in einem von einem Assistenten zusammengestellten Expert Advisor verwendet werden können.

Entwicklung eines Replay System (Teil 30): Expert Advisor Projekt — Die Klasse C_Mouse (IV)
Heute werden wir eine Technik lernen, die uns in verschiedenen Phasen unseres Berufslebens als Programmierer sehr helfen kann. Oft ist es nicht die Plattform selbst, die begrenzt ist, sondern das Wissen der Person, die über die Grenzen spricht. In diesem Artikel erfahren Sie, dass Sie mit gesundem Menschenverstand und Kreativität die MetaTrader 5-Plattform viel interessanter und vielseitiger gestalten können, ohne auf verrückte Programme oder ähnliches zurückgreifen zu müssen, und einfachen, aber sicheren und zuverlässigen Code erstellen können. Wir werden unsere Kreativität nutzen, um bestehenden Code zu ändern, ohne eine einzige Zeile des Quellcodes zu löschen oder hinzuzufügen.

MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 07): Dendrogramme
Die Klassifizierung von Daten zu Analyse- und Prognosezwecken ist ein sehr vielfältiger Bereich des maschinellen Lernens, der eine große Anzahl von Ansätzen und Methoden umfasst. Dieser Beitrag befasst sich mit einem solchen Ansatz, der Agglomerativen Hierarchischen Klassifikation.

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 3): Überarbeitung der Architektur
Wir haben bereits einige Fortschritte bei der Entwicklung eines Mehrwährungs-EAs mit mehreren parallel arbeitenden Strategien gemacht. In Anbetracht der gesammelten Erfahrungen sollten wir die Architektur unserer Lösung überprüfen und versuchen, sie zu verbessern, bevor wir zu weit vorpreschen.

Neuronale Netze leicht gemacht (Teil 77): Cross-Covariance Transformer (XCiT)
In unseren Modellen verwenden wir häufig verschiedene Aufmerksamkeitsalgorithmen. Und am häufigsten verwenden wir wahrscheinlich Transformers. Ihr größter Nachteil ist der Ressourcenbedarf. In diesem Artikel wird ein neuer Algorithmus vorgestellt, der dazu beitragen kann, die Rechenkosten ohne Qualitätseinbußen zu senken.

Algorithmen zur Optimierung mit Populationen: Der Affen-Algorithmus (Monkey Algorithmus, MA)
In diesem Artikel werde ich den Optimierungsalgorithmus Affen-Algorithmus (MA, Monkey Algorithmus) betrachten. Die Fähigkeit dieser Tiere, schwierige Hindernisse zu überwinden und die unzugänglichsten Baumkronen zu erreichen, bildete die Grundlage für die Idee des MA-Algorithmus.

Algorithmen zur Optimierung mit Populationen: Shuffled Frog-Leaping Algorithmus (SFL)
Der Artikel enthält eine detaillierte Beschreibung des Shuffled-Frog-Leaping-Algorithmus (SFL) und seiner Fähigkeiten bei der Lösung von Optimierungsproblemen. Der SFL-Algorithmus ist vom Verhalten der Frösche in ihrer natürlichen Umgebung inspiriert und bietet einen neuen Ansatz zur Funktionsoptimierung. Der SFL-Algorithmus ist ein effizientes und flexibles Werkzeug, das eine Vielzahl von Datentypen verarbeiten und optimale Lösungen erzielen kann.


Grafiken in der DoEasy-Bibliothek (Teil 95): Steuerelemente für zusammengesetzte grafische Objekte
In diesem Artikel befasse ich mich mit den Hilfsmitteln zur Verwaltung zusammengesetzter grafischer Objekte - Steuerelemente zur Verwaltung eines erweiterten grafischen Standardobjekts. Heute werde ich ein wenig vom Verschieben eines zusammengesetzten grafischen Objekts abweichen und den Handler für Änderungsereignisse in einem Chart mit einem zusammengesetzten grafischen Objekt implementieren. Außerdem werde ich mich auf die Steuerelemente für die Verwaltung eines zusammengesetzten grafischen Objekts konzentrieren.

Entwicklung eines Replay System (Teil 27): Expert Advisor Projekt — Die Klasse C_Mouse (II)
In diesem Artikel werden wir die Klasse C_Mouse implementieren. Es bietet die Möglichkeit, auf höchstem Niveau zu programmieren. Wenn man über High-Level- oder Low-Level-Programmiersprachen spricht, geht es jedoch nicht darum, obszöne Wörter oder Jargon in den Code aufzunehmen. Es ist genau andersherum. Wenn wir von High-Level- oder Low-Level-Programmierung sprechen, meinen wir, wie leicht oder schwer der Code für andere Programmierer zu verstehen ist.

Algorithmen zur Optimierung mit Populationen: Ein dem Elektro-Magnetismus ähnlicher Algorithmus (ЕМ)
Der Artikel beschreibt die Prinzipien, Methoden und Möglichkeiten der Anwendung des elektromagnetischen Algorithmus bei verschiedenen Optimierungsproblemen. Der EM-Algorithmus ist ein effizientes Optimierungswerkzeug, das mit großen Datenmengen und mehrdimensionalen Funktionen arbeiten kann.

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 1): Zusammenarbeit von mehreren Handelsstrategien
Es gibt eine ganze Reihe von verschiedenen Handelsstrategien. Daher kann es sinnvoll sein, mehrere Strategien parallel anzuwenden, um Risiken zu diversifizieren und die Stabilität der Handelsergebnisse zu erhöhen. Wenn jedoch jede Strategie als separater Expert Advisor (EA) implementiert wird, wird die Verwaltung ihrer Arbeit auf einem Handelskonto sehr viel schwieriger. Um dieses Problem zu lösen, wäre es sinnvoll, den Betrieb verschiedener Handelsstrategien innerhalb eines einzigen EA zu implementieren.

Winkelbasierte Operationen für Händler
Dieser Artikel behandelt winkelbasierte Operationen. Wir werden uns Methoden zur Konstruktion von Winkeln und deren Verwendung beim Handel ansehen.

Entwicklung eines Replay Systems — Marktsimulation (Teil 24): FOREX (V)
Heute werden wir eine Einschränkung aufheben, die bisher Simulationen auf der Grundlage des letzten Kurses verhindert hat, und einen neuen Einstiegspunkt speziell für diese Art von Simulationen einführen. Der gesamte Funktionsmechanismus wird auf den Prinzipien des Devisenmarktes beruhen. Der Hauptunterschied in diesem Verfahren ist die Trennung von Bid- und Last-Simulationen. Es ist jedoch wichtig zu beachten, dass die Methode zur Randomisierung der Zeit und zur Anpassung an die Klasse C_Replay in beiden Simulationen identisch bleibt. Das ist gut, denn Änderungen in einem Modus führen automatisch zu Verbesserungen im anderen, vor allem wenn es um die Handhabung der Zeit zwischen den Ticks geht.

Chaostheorie im Handel (Teil 1): Einführung, Anwendung auf den Finanzmärkten und Lyapunov-Exponent
Kann die Chaostheorie auf die Finanzmärkte angewendet werden? In diesem Artikel werden wir untersuchen, wie sich die herkömmliche Chaostheorie und chaotische Systeme von dem von Bill Williams vorgeschlagenen Konzept unterscheiden.


Video: Als Nächstes tragen Sie den Servernamen, Ihre Kontonummer und das Master-Passwort an.
Die Mehrheit der Studenten in meinen Kursen war der Meinung, dass MQL5 wirklich schwer zu verstehen ist. Darüber hinaus suchten sie nach einer einfachen Methode, um einige Prozesse zu automatisieren. Entdecken Sies, wie Sie sofort mit MQL5 arbeiten können, einfach durch das Lesen der in diesem Artikel enthaltenen Informationen. Selbst, wenn Sie noch nie etwas programmiert haben. Und auch für den Fall, dass Sie die vorhergehenden Illustrationen, die Sie beobachtet haben, nicht nachvollziehen können.

DoEasy. Steuerung (Teil 7): Steuerung der Text Label
In diesem Artikel werde ich die Klasse des WinForms Steuerungsobjekts der Text Label erstellen. Ein solches Objekt kann seinen Container an beliebiger Stelle positionieren, während seine eigene Funktionalität die Funktionalität des MS Visual Studio-Text Label kopiert. Wir werden in der Lage sein, Schriftparameter für einen angezeigten Text festzulegen.

Beispiel eines neuen Indikators und eines Conditional LSTM
Dieser Artikel befasst sich mit der Entwicklung eines Expert Advisors (EA) für den automatisierten Handel, der technische Analyse mit Deep Learning-Vorhersagen kombiniert.

Kategorientheorie in MQL5 (Teil 21): Natürliche Transformationen mit LDA
In diesem Artikel, dem 21. in unserer Reihe, geht es weiter mit einem Blick auf natürliche Transformationen und wie sie mit Hilfe der linearen Diskriminanzanalyse umgesetzt werden können. Wir stellen diese Anwendungen in einem Signalklassenformat vor, wie im vorherigen Artikel.

Neuronale Netze leicht gemacht (Teil 88): Zeitreihen-Dense-Encoder (TiDE)
In dem Bestreben, möglichst genaue Prognosen zu erhalten, verkomplizieren die Forscher häufig die Prognosemodelle. Dies wiederum führt zu höheren Kosten für Training und Wartung der Modelle. Ist eine solche Erhöhung immer gerechtfertigt? In diesem Artikel wird ein Algorithmus vorgestellt, der die Einfachheit und Schnelligkeit linearer Modelle nutzt und Ergebnisse liefert, die mit den besten Modellen mit einer komplexeren Architektur vergleichbar sind.

Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 5): Senden von Befehlen von Telegram an MQL5 und Empfangen von Antworten in Echtzeit
In diesem Artikel erstellen wir mehrere Klassen, um die Echtzeitkommunikation zwischen MQL5 und Telegram zu erleichtern. Wir konzentrieren uns darauf, Befehle von Telegram abzurufen, sie zu entschlüsseln und zu interpretieren und entsprechende Antworten zurückzusenden. Am Ende stellen wir sicher, dass diese Interaktionen effektiv getestet werden und in der Handelsumgebung funktionieren.

Experimente mit Neuronalen Netzen (Teil 4): Schablonen (Templates)
In diesem Artikel werde ich mit Hilfe von Experimenten und unkonventionellen Ansätzen ein profitables Handelssystem entwickeln und prüfen, ob Neuronale Netze für Händler eine Hilfe sein können. Der MetaTrader 5 als ein autarkes Tool für den Einsatz Neuronaler Netze im Handel. Einfache Erklärung.

Algorithmen zur Optimierung mit Populationen: Mikro-Künstliches Immunsystem (Mikro-AIS)
Der Artikel befasst sich mit einer Optimierungsmethode, die auf den Prinzipien des körpereigenen Immunsystems basiert - Mikro-Künstliches Immunsystem (Micro Artificial Immune System, Micro-AIS) - eine Modifikation von AIS. Micro-AIS verwendet ein einfacheres Modell des Immunsystems und einfache Informationsverarbeitungsprozesse des Immunsystems. In dem Artikel werden auch die Vor- und Nachteile von Mikro-AIS im Vergleich zu herkömmlichen AIS erörtert.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 13): DBSCAN für eine Klasse für Expertensignale
Density Based Spatial Clustering for Applications with Noise (DBSCAN) ist eine unüberwachte Form der Datengruppierung, die kaum Eingabeparameter benötigt, außer 2, was im Vergleich zu anderen Ansätzen wie K-Means ein Segen ist. Wir gehen der Frage nach, wie dies für das Testen und schließlich den Handel mit den von Wizard zusammengestellten Expert Advisers konstruktiv sein kann

Integration von Hidden-Markov-Modellen in MetaTrader 5
In diesem Artikel zeigen wir, wie mit Python trainierte Hidden Markov Modelle in MetaTrader 5 Anwendungen integriert werden können. Hidden-Markov-Modelle sind ein leistungsfähiges statistisches Instrument zur Modellierung von Zeitreihendaten, bei denen das modellierte System durch nicht beobachtbare (verborgene) Zustände gekennzeichnet ist. Eine grundlegende Prämisse von HMMs ist, dass die Wahrscheinlichkeit, sich zu einem bestimmten Zeitpunkt in einem bestimmten Zustand zu befinden, vom Zustand des Prozesses im vorherigen Zeitfenster abhängt.

Entwicklung eines Wiedergabesystems — Marktsimulation (Teil 21): FOREX (II)
Wir werden weiterhin ein System für die Arbeit auf dem FOREX-Markt aufbauen. Um dieses Problem zu lösen, müssen wir zuerst das Laden der Ticks deklarieren, bevor wir die vorherigen Balken laden. Dies löst zwar das Problem, zwingt den Nutzer aber gleichzeitig dazu, sich an eine bestimmte Struktur in der Konfigurationsdatei zu halten, was ich persönlich nicht sehr sinnvoll finde. Der Grund dafür ist, dass wir durch die Entwicklung eines Programms, das für die Analyse und Ausführung der Konfigurationsdatei verantwortlich ist, dem Nutzer die Möglichkeit geben können, die von ihm benötigten Elemente in beliebiger Reihenfolge zu deklarieren.

Beherrschen der Modellinterpretation: Gewinnen Sie tiefere Einblicke in Ihren Machine Learning-Modelle
Maschinelles Lernen ist ein komplexes und lohnendes Gebiet für jeden, unabhängig von seiner Erfahrung. In diesem Artikel tauchen wir tief in die inneren Mechanismen ein, die den von Ihnen erstellten Modellen zugrunde liegen. Wir erforschen die komplizierte Welt der Merkmale, Vorhersagen und wirkungsvollen Entscheidungen, um die Komplexität zu entschlüsseln und ein sicheres Verständnis der Modellinterpretation zu erlangen. Lernen Sie die Kunst, Kompromisse zu finden, Vorhersagen zu verbessern, die Wichtigkeit von Merkmalen einzustufen und gleichzeitig eine solide Entscheidungsfindung zu gewährleisten. Diese wichtige Lektüre hilft Ihnen, mehr Leistung aus Ihren maschinellen Lernmodellen herauszuholen und mehr Wert aus dem Einsatz von maschinellen Lernmethoden zu ziehen.

Entwicklung eines MQTT-Clients für MetaTrader 5: ein TDD-Ansatz - Teil 2
Dieser Artikel ist Teil einer Serie, die unsere Entwicklungsschritte für einen nativen MQL5-Client für das MQTT-Protokoll beschreibt. In diesem Teil beschreiben wir unsere Code-Organisation, die ersten Header-Dateien und Klassen, und wie wir unsere Tests schreiben. Dieser Artikel enthält auch kurze Hinweise auf die Praxis der testgetriebenen Entwicklung und wie wir sie in diesem Projekt anwenden.