Artikel über das Programmieren in MQL5

icon

Lernen Sie die Sprache von Handelsstrategien MQL5 nach den hier veröffentlichten Artikeln, die meisten von denen Sie - die Mitglieder der Community - geschrieben haben. Alle Artikel sind in drei Kategorien aufgeteilt, damit man eine Antwort auf unterschiedliche Fragen des Programmierens schnell finden könnte: "Integration", "Tester", "Handelsstrategien" und vieles mehr.

Verfolgen Sie neue Veröffentlichungen und diskutieren Sie über diese im Forum!

Neuer Artikel
letzte | beste
preview
Datenkennzeichnung für die Zeitreihenanalyse (Teil 3):Beispiel für die Verwendung von Datenkennzeichnungen

Datenkennzeichnung für die Zeitreihenanalyse (Teil 3):Beispiel für die Verwendung von Datenkennzeichnungen

In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung (labeling) von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!
preview
Algorithmen zur Optimierung mit Populationen: Binärer genetischer Algorithmus (BGA). Teil II

Algorithmen zur Optimierung mit Populationen: Binärer genetischer Algorithmus (BGA). Teil II

In diesem Artikel befassen wir uns mit dem binären genetischen Algorithmus (BGA), der die natürlichen Prozesse modelliert, die im genetischen Material von Lebewesen in der Natur ablaufen.
Algorithmen zur Populationsoptimierung
Algorithmen zur Populationsoptimierung

Algorithmen zur Populationsoptimierung

Dies ist ein einführender Artikel über die Klassifizierung von Optimierungsalgorithmen (OA). In dem Artikel wird versucht, einen Prüfstand (eine Reihe von Funktionen) zu erstellen, der zum Vergleich von OAs und vielleicht zur Ermittlung des universellsten Algorithmus unter allen bekannten Algorithmen verwendet werden soll.
preview
Datenwissenschaft und maschinelles Lernen — Neuronales Netzwerk (Teil 02): Entwurf von Feed Forward NN-Architekturen

Datenwissenschaft und maschinelles Lernen — Neuronales Netzwerk (Teil 02): Entwurf von Feed Forward NN-Architekturen

Bevor wir fertig sind, müssen wir noch einige kleinere Dinge im Zusammenhang mit dem neuronalen Feed-Forward-Netz behandeln, unter anderem den Entwurf. Sehen wir uns an, wie wir ein flexibles neuronales Netz für unsere Eingaben, die Anzahl der verborgenen Schichten und die Knoten für jedes Netz aufbauen und gestalten können.
preview
Neuronale Netze leicht gemacht (Teil 40): Verwendung von Go-Explore bei großen Datenmengen

Neuronale Netze leicht gemacht (Teil 40): Verwendung von Go-Explore bei großen Datenmengen

In diesem Artikel wird die Verwendung des Go-Explore-Algorithmus über einen langen Trainingszeitraum erörtert, da die Strategie der zufälligen Aktionsauswahl mit zunehmender Trainingszeit möglicherweise nicht zu einem profitablen Durchgang führt.
preview
Grafiken in der DoEasy-Bibliothek (Teil 99): Verschieben eines erweiterten grafischen Objekts mit einem einzigen Steuerpunkt

Grafiken in der DoEasy-Bibliothek (Teil 99): Verschieben eines erweiterten grafischen Objekts mit einem einzigen Steuerpunkt

Im vorigen Artikel habe ich die Möglichkeit implementiert, Angelpunkte eines erweiterten grafischen Objekts mithilfe von Steuerformularen zu verschieben. Jetzt werde ich die Möglichkeit implementieren, ein zusammengesetztes grafisches Objekt mithilfe eines einzelnen grafischen Objektsteuerungspunkts (Formulars) zu verschieben.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 11): Die Geburt des SIMULATORS (I)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 11): Die Geburt des SIMULATORS (I)

Um die Daten, die die Balken bilden, nutzen zu können, müssen wir auf das Replay verzichten und einen Simulator entwickeln. Wir werden 1-Minuten-Balken verwenden, weil sie den geringsten Schwierigkeitsgrad aufweisen.
preview
DoEasy. Steuerung (Teil 17): Beschneiden unsichtbarer Objektteile, Hilfspfeiltasten WinForms-Objekte

DoEasy. Steuerung (Teil 17): Beschneiden unsichtbarer Objektteile, Hilfspfeiltasten WinForms-Objekte

In diesem Artikel werde ich die Funktionalität zum Ausblenden von Objektabschnitten, die sich außerhalb ihrer Container befinden, erstellen. Außerdem werde ich zusätzliche Pfeiltastenobjekte erstellen, die als Teil anderer WinForms-Objekte verwendet werden können.
preview
Algorithmen zur Optimierung mit Populationen: Stochastische Diffusionssuche (SDS)

Algorithmen zur Optimierung mit Populationen: Stochastische Diffusionssuche (SDS)

Der Artikel behandelt die stochastische Diffusionssuche (SDS), einen sehr leistungsfähigen und effizienten Optimierungsalgorithmus, der auf den Prinzipien des Random Walk basiert. Der Algorithmus ermöglicht es, optimale Lösungen in komplexen mehrdimensionalen Räumen zu finden, wobei er sich durch eine hohe Konvergenzgeschwindigkeit und die Fähigkeit auszeichnet, lokale Extrema zu vermeiden.
preview
Neuronale Netze leicht gemacht (Teil 18): Assoziationsregeln

Neuronale Netze leicht gemacht (Teil 18): Assoziationsregeln

Als Fortsetzung dieser Artikelserie betrachten wir eine andere Art von Problemen innerhalb der Methoden des unüberwachten Lernens: die Ermittlung von Assoziationsregeln. Dieser Problemtyp wurde zuerst im Einzelhandel, insbesondere in Supermärkten, zur Analyse von Warenkörben eingesetzt. In diesem Artikel werden wir über die Anwendbarkeit solcher Algorithmen im Handel sprechen.
preview
DoEasy. Kontrollen (Teil 9): Neuanordnung von WinForms-Objektmethoden, Steuerung von RadioButton und Steuerungen

DoEasy. Kontrollen (Teil 9): Neuanordnung von WinForms-Objektmethoden, Steuerung von RadioButton und Steuerungen

In diesem Artikel werde ich die Namen der Methoden der WinForms-Objektklasse festlegen und WinForms-Objekte Button und RadioButton erstellen.
preview
Neuronale Netze leicht gemacht (Teil 52): Forschung mit Optimismus und Verteilungskorrektur

Neuronale Netze leicht gemacht (Teil 52): Forschung mit Optimismus und Verteilungskorrektur

Da das Modell auf der Grundlage des Erfahrungswiedergabepuffers trainiert wird, entfernt sich die aktuelle Strategie oder Politik des Akteurs immer weiter von den gespeicherten Beispielen, was die Effizienz des Trainings des Modells insgesamt verringert. In diesem Artikel befassen wir uns mit einem Algorithmus zur Verbesserung der Effizienz bei der Verwendung von Stichproben in Algorithmen des verstärkten Lernens.
preview
Neuronale Netze leicht gemacht (Teil 55): Contrastive Intrinsic Control (CIC)

Neuronale Netze leicht gemacht (Teil 55): Contrastive Intrinsic Control (CIC)

Das kontrastive Training ist eine unüberwachte Methode zum Training der Repräsentation. Ziel ist es, ein Modell zu trainieren, das Ähnlichkeiten und Unterschiede in Datensätzen aufzeigt. In diesem Artikel geht es um die Verwendung kontrastiver Trainingsansätze zur Erkundung verschiedener Fähigkeiten des Akteurs (Actor skills).
preview
Aufbau des Kerzenmodells Trend-Constraint (Teil 4): Anpassen des Anzeigestils für jede Trendwelle

Aufbau des Kerzenmodells Trend-Constraint (Teil 4): Anpassen des Anzeigestils für jede Trendwelle

In diesem Artikel werden wir die Möglichkeiten der leistungsstarken MQL5-Sprache beim Zeichnen verschiedener Indikatorstile in Meta Trader 5 untersuchen. Wir werden uns auch mit Skripten beschäftigen und wie sie in unserem Modell verwendet werden können.
preview
Erstellen von selbstoptimierenden Expert Advisor in MQL5 (Teil 5): Selbstanpassende Handelsregeln

Erstellen von selbstoptimierenden Expert Advisor in MQL5 (Teil 5): Selbstanpassende Handelsregeln

Die besten Praktiken, die festlegen, wie ein Indikator sicher zu verwenden ist, sind nicht immer leicht zu befolgen. Bei ruhigen Marktbedingungen kann der Indikator überraschenderweise Werte anzeigen, die nicht als Handelssignal gelten, was dazu führt, dass algorithmischen Händlern Chancen entgehen. In diesem Artikel wird eine mögliche Lösung für dieses Problem vorgeschlagen, da wir erörtern, wie Handelsanwendungen entwickelt werden können, die ihre Handelsregeln an die verfügbaren Marktdaten anpassen.
preview
Lernen Sie, wie man ein Handelssystem mit Bears Power entwirft

Lernen Sie, wie man ein Handelssystem mit Bears Power entwirft

Willkommen zu einem neuen Artikel in unserer Serie über das Lernen, wie man ein Handelssystem durch die beliebtesten technischen Indikator hier ist ein neuer Artikel über das Lernen, wie man ein Handelssystem von Bears Power technischen Indikator zu entwerfen.
preview
Ihrer eigenes LLM in einen EA integrieren (Teil 5): Handelsstrategie mit LLMs(I) entwickeln und testen – Feinabstimmung

Ihrer eigenes LLM in einen EA integrieren (Teil 5): Handelsstrategie mit LLMs(I) entwickeln und testen – Feinabstimmung

Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
preview
Neuronale Netze leicht gemacht (Teil 25): Praxis des Transfer-Learnings

Neuronale Netze leicht gemacht (Teil 25): Praxis des Transfer-Learnings

In den letzten beiden Artikeln haben wir ein Tool zur Erstellung und Bearbeitung von Modellen neuronaler Netze entwickelt. Nun ist es an der Zeit, die Einsatzmöglichkeiten der Technologie des Transfer-Learnings anhand praktischer Beispiele zu bewerten.
preview
Quantisierung beim maschinellen Lernen (Teil 2): Datenvorverarbeitung, Tabellenauswahl, Training von CatBoost-Modellen

Quantisierung beim maschinellen Lernen (Teil 2): Datenvorverarbeitung, Tabellenauswahl, Training von CatBoost-Modellen

Der Artikel befasst sich mit der praktischen Anwendung der Quantisierung bei der Konstruktion von Baummodellen. Die Methoden zur Auswahl von Quantentabellen und zur Datenvorverarbeitung werden berücksichtigt. Es werden keine komplexen mathematischen Gleichungen verwendet.
preview
Entwurfsmuster in der Softwareentwicklung und MQL5 (Teil 2): Strukturelle Muster

Entwurfsmuster in der Softwareentwicklung und MQL5 (Teil 2): Strukturelle Muster

In diesem Artikel werden wir unsere Artikel über Entwurfsmuster fortsetzen, nachdem wir gelernt haben, wie wichtig dieses Thema für uns als Entwickler ist, um erweiterbare, zuverlässige Anwendungen nicht nur mit der Programmiersprache MQL5, sondern auch mit anderen zu entwickeln. Wir werden eine andere Art von Entwurfsmustern kennenlernen, nämlich die strukturellen, um zu lernen, wie man Systeme entwirft, indem man das, was wir als Klassen haben, zur Bildung größerer Strukturen verwendet.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 24): Gleitende Durchschnitte

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 24): Gleitende Durchschnitte

Gleitende Durchschnitte sind ein sehr verbreiteter Indikator, der von den meisten Händlern verwendet und verstanden wird. Wir erforschen mögliche Anwendungsfälle, die in den mit dem MQL5-Assistenten zusammengestellten Expert Advisors vielleicht nicht so häufig vorkommen.
preview
Entwicklung eines Replay System (Teil 32): Auftragssystem (I)

Entwicklung eines Replay System (Teil 32): Auftragssystem (I)

Von allen Dingen, die wir bisher entwickelt haben, ist dieses System, wie Sie wahrscheinlich bemerken und letztendlich zustimmen werden, das komplexeste. Nun müssen wir etwas sehr Einfaches tun: unser System soll den Betrieb eines Handelsservers simulieren. Die Notwendigkeit, die Funktionsweise des Handelsservers genau zu implementieren, scheint eine Selbstverständlichkeit zu sein. Zumindest in Worten. Aber wir müssen dies so tun, dass alles nahtlos und transparent für den Nutzer des Wiedergabe-/Simulationssystems ist.
preview
Lernen Sie, wie man ein Handelssystem mit Bill Williams' MFI entwickelt

Lernen Sie, wie man ein Handelssystem mit Bill Williams' MFI entwickelt

Dies ist ein neuer Artikel in der Serie, in der wir lernen, wie man ein Handelssystem auf der Grundlage beliebter technischer Indikatoren entwickelt. Dieses Mal werden wir den Market Facilitation Index von Bill Williams (BW MFI) besprechen.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 19): Erforderliche Anpassungen

Entwicklung eines Replay Systems — Marktsimulation (Teil 19): Erforderliche Anpassungen

Hier werden wir den Boden bereiten, damit wir, wenn wir neue Funktionen zum Code hinzufügen müssen, dies reibungslos und einfach tun können. Der derzeitige Kodex kann einige der Dinge, die notwendig sind, um sinnvolle Fortschritte zu erzielen, noch nicht abdecken oder behandeln. Wir müssen alles strukturieren, damit wir bestimmte Dinge mit minimalem Aufwand umsetzen können. Wenn wir alles richtig machen, erhalten wir ein wirklich universelles System, das sich sehr leicht an jede Situation anpassen lässt, die es zu bewältigen gilt.
preview
Neuronale Netze leicht gemacht (Teil 47): Kontinuierlicher Aktionsraum

Neuronale Netze leicht gemacht (Teil 47): Kontinuierlicher Aktionsraum

In diesem Artikel erweitern wir das Aufgabenspektrum unseres Agenten. Der Ausbildungsprozess wird einige Aspekte des Geld- und Risikomanagements umfassen, die ein wesentlicher Bestandteil jeder Handelsstrategie sind.
preview
Neuronale Netze leicht gemacht (Teil 61): Optimismusproblem beim Offline-Verstärkungslernen

Neuronale Netze leicht gemacht (Teil 61): Optimismusproblem beim Offline-Verstärkungslernen

Während des Offline-Lernens optimieren wir die Strategie des Agenten auf der Grundlage der Trainingsdaten. Die daraus resultierende Strategie gibt dem Agenten Vertrauen in sein Handeln. Ein solcher Optimismus ist jedoch nicht immer gerechtfertigt und kann zu erhöhten Risiken während des Modellbetriebs führen. Heute werden wir uns mit einer der Methoden zur Verringerung dieser Risiken befassen.
preview
Algorithmen zur Optimierung mit Populationen: Umformen, Verschieben von Wahrscheinlichkeitsverteilungen und der Test auf Smart Cephalopod (SC)

Algorithmen zur Optimierung mit Populationen: Umformen, Verschieben von Wahrscheinlichkeitsverteilungen und der Test auf Smart Cephalopod (SC)

Der Artikel untersucht die Auswirkungen einer Formveränderung von Wahrscheinlichkeitsverteilungen auf die Leistung von Optimierungsalgorithmen. Wir werden Experimente mit dem Testalgorithmus Smart Cephalopod (SC) durchführen, um die Effizienz verschiedener Wahrscheinlichkeitsverteilungen im Zusammenhang mit Optimierungsproblemen zu bewerten.
preview
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 1): Senden von Nachrichten von MQL5 an Telegram

Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 1): Senden von Nachrichten von MQL5 an Telegram

In diesem Artikel erstellen wir einen Expert Advisor (EA) in MQL5, um mit einem Bot Nachrichten an Telegram zu senden. Wir richten die erforderlichen Parameter ein, einschließlich des API-Tokens und der Chat-ID des Bots, und führen dann eine HTTP-POST-Anforderung aus, um die Nachrichten zu übermitteln. Später kümmern wir uns um die Beantwortung der Fragen, um eine erfolgreiche Zustellung zu gewährleisten, und beheben alle Probleme, die im Falle eines Fehlers auftreten. Dies stellt sicher, dass wir Nachrichten von MQL5 an Telegram über den erstellten Bot senden.
preview
Entwicklung fortschrittlicher ICT-Handelssysteme: Implementierung von Orderblöcken in einem Indikator

Entwicklung fortschrittlicher ICT-Handelssysteme: Implementierung von Orderblöcken in einem Indikator

In diesem Artikel erfahren Sie, wie Sie einen Indikator erstellen, der die Abschwächung von Orderblöcken erkennt, zeichnet und Alarm schlägt. Wir werden auch einen detaillierten Blick darauf werfen, wie man diese Blöcke auf dem Chart identifiziert, genaue Alarme setzt und ihre Position mit Hilfe von Rechtecken visualisiert, um die Preisaktion besser zu verstehen. Dieser Indikator ist ein wichtiges Instrument für Händler, die den Smart Money Concepts und der Inner Circle Trader-Methode folgen.
preview
Entwicklung einer Zone Recovery Martingale Strategie in MQL5

Entwicklung einer Zone Recovery Martingale Strategie in MQL5

In diesem Artikel werden die Schritte, die für die Erstellung eines auf dem Zone Recovery-Handelsalgorithmus basierenden Expert Advisors erforderlich sind, ausführlich beschrieben. Dies hilft, das System zu automatisieren und spart den Algotradern Zeit.
preview
Klassische Strategien neu interpretieren (Teil XI): Kreuzung gleitender Durchschnitte (II)

Klassische Strategien neu interpretieren (Teil XI): Kreuzung gleitender Durchschnitte (II)

Die gleitenden Durchschnitte und der Stochastik-Oszillator können verwendet werden, um trendfolgende Handelssignale zu generieren. Diese Signale werden jedoch erst nach dem Eintreten der Preisaktion beobachtet. Diese den technischen Indikatoren innewohnende Verzögerung können wir mit Hilfe von KI wirksam überwinden. In diesem Artikel erfahren Sie, wie Sie einen vollständig autonomen KI-gesteuerten Expert Advisor erstellen, der Ihre bestehenden Handelsstrategien verbessern kann. Selbst die älteste mögliche Handelsstrategie kann verbessert werden.
preview
Erstellen von selbstoptimierenden Expertenberatern in MQL5 (Teil 2): USDJPY Scalping Strategie

Erstellen von selbstoptimierenden Expertenberatern in MQL5 (Teil 2): USDJPY Scalping Strategie

Seien Sie dabei, wenn wir uns heute der Herausforderung stellen, eine Handelsstrategie rund um das USDJPY-Paar zu entwickeln. Wir handeln Kerzenmuster, die auf dem täglichen Zeitrahmen gebildet werden, weil sie potenziell mehr Kraft hinter sich haben. Unsere anfängliche Strategie war gewinnbringend, was uns ermutigte, die Strategie weiter zu verfeinern und zusätzliche Sicherheitsschichten hinzuzufügen, um das gewonnene Kapital zu schützen.
Grafiken in der DoEasy-Bibliothek (Teil 91): Standard-Ereignisse für grafische Objekte. Geschichte der Objektnamensänderung
Grafiken in der DoEasy-Bibliothek (Teil 91): Standard-Ereignisse für grafische Objekte. Geschichte der Objektnamensänderung

Grafiken in der DoEasy-Bibliothek (Teil 91): Standard-Ereignisse für grafische Objekte. Geschichte der Objektnamensänderung

In diesem Artikel werde ich die Grundfunktionalität für die Kontrolle über grafische Objektereignisse in einem bibliotheksbasierten Programm verfeinern. Ich beginne mit der Implementierung der Funktionalität zur Speicherung der Änderungshistorie grafischer Objekte am Beispiel der Eigenschaft "Objektname".
preview
Algorithmen zur Optimierung mit Populationen: Harmonie-Suche (HS)

Algorithmen zur Optimierung mit Populationen: Harmonie-Suche (HS)

In diesem Artikel werde ich den leistungsstärksten Optimierungsalgorithmus untersuchen und testen - die Harmonie-Suche (HS), inspiriert durch den Prozess der Suche nach der perfekten Klangharmonie. Welcher Algorithmus ist nun der führende in unserer Bewertung?
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 09): K-Means-Clustering mit fraktalen Wellen

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 09): K-Means-Clustering mit fraktalen Wellen

Das K-Means-Clustering verfolgt den Ansatz, Datenpunkte als einen Prozess zu gruppieren, der sich zunächst auf die Makroansicht eines Datensatzes konzentriert und zufällig generierte Clusterzentren verwendet, bevor er heranzoomt und diese Zentren anpasst, um den Datensatz genau darzustellen. Wir werden uns dies ansehen und einige Anwendungsfälle ausnutzen.
preview
Integrieren Sie Ihr eigenes LLM in Ihren EA (Teil 3): Training Ihres eigenen LLM mit CPU

Integrieren Sie Ihr eigenes LLM in Ihren EA (Teil 3): Training Ihres eigenen LLM mit CPU

Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
preview
Risikomanager für den manuellen Handel

Risikomanager für den manuellen Handel

In diesem Artikel wird detailliert beschrieben, wie man eine Risikomanager-Klasse für den manuellen Handel von Grund auf schreibt. Diese Klasse kann auch als Basisklasse für die Vererbung durch algorithmische Händler verwendet werden, die automatisierte Programme einsetzen.
Entwicklung eines Wiedergabesystems — Marktsimulation (Teil 10): Nur echte Daten für das Replay verwenden
Entwicklung eines Wiedergabesystems — Marktsimulation (Teil 10): Nur echte Daten für das Replay verwenden

Entwicklung eines Wiedergabesystems — Marktsimulation (Teil 10): Nur echte Daten für das Replay verwenden

Hier werden wir uns ansehen, wie wir zuverlässigere Daten (gehandelte Ticks) im Wiedergabesystem verwenden können, ohne uns Gedanken darüber zu machen, ob sie angepasst sind oder nicht.
preview
Elastische Netzregression mit Koordinatenabstieg in MQL5

Elastische Netzregression mit Koordinatenabstieg in MQL5

In diesem Artikel untersuchen wir die praktische Umsetzung der elastischen Netzregression, um die Überanpassung zu minimieren und gleichzeitig automatisch nützliche Prädiktoren von solchen zu trennen, die wenig prognostische Kraft haben.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 27): Der Zukunft entgegen (II)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 27): Der Zukunft entgegen (II)

Gehen wir nun zu einem vollständigeren Auftragssystem direkt auf dem Chart über. In diesem Artikel zeige ich einen Weg, das Auftragssystem zu reparieren, oder besser gesagt, es intuitiver zu gestalten.