有关MetaTrader 5手动和算法交易的文章

icon

这个类别的特色文章,涵盖了交易的所有方面 - 从手动到全自动交易,从 EA 思路到利用 MQL5 向导 创建交易机器人。仓位管理,交易事件处理以及资金管理 - 这些组成部分都在这些文章里覆盖。

学习 如何复制交易信号,如何提供不间断的 EA 操作,如何创建交易机器人,如何在 Linux 和 MacOS 上运行 MetaTrader,什么是社群交易,以及如何订购交易机器人。

添加一个新的文章
最近 | 最佳
preview
MQL5 交易管理面板开发指南(第六部分):交易管理面板(续篇)

MQL5 交易管理面板开发指南(第六部分):交易管理面板(续篇)

在本文中,我们对多功能管理面板的“交易面板”进行升级。我们引入一个强大的辅助函数,大幅简化代码,提高可读性、可维护性与运行效率。同时演示如何无缝集成更多按钮,并优化界面,以支持更广泛的交易任务。无论是持仓管理、订单调整,还是简化交互,本文将助您打造稳健且易用的交易管理面板。
preview
数据科学和机器学习(第 31 部分):利用 CatBoost AI 模型进行交易

数据科学和机器学习(第 31 部分):利用 CatBoost AI 模型进行交易

CatBoost AI 模型最近在机器学习社区中广受欢迎,因为它们的预测准确性、效率、及针对分散和困难数据集的健壮性。在本文中,我们将详细讨论如何实现这些类型的模型,进而尝试进击外汇市场。
preview
如何使用 MetaTrader 和 Google Sheets 创建交易日志

如何使用 MetaTrader 和 Google Sheets 创建交易日志

使用 MetaTrader 和 Google Sheets 创建交易日志!您将学习如何通过 HTTP POST 同步您的交易数据,并使用 HTTP 请求来获取它。最后,您有一个交易日志,可以帮助您有效地跟踪您的交易。
preview
ALGLIB库优化方法(第一部分)

ALGLIB库优化方法(第一部分)

在本文中,我们将了解适用于MQL5的ALGLIB库的优化方法。本文包含了使用ALGLIB解决优化问题的简单且清晰的示例,旨在使读者能够尽可能轻松地掌握这些方法。我们将详细探讨BLEIC、L-BFGS和NS等算法的连接方式,并使用它们来解决一个简单的测试问题。
preview
在MQL5中创建交易管理员面板(第七部分):可信任用户、密码恢复与加密技术

在MQL5中创建交易管理员面板(第七部分):可信任用户、密码恢复与加密技术

每次刷新图表、通过管理面板EA添加新交易品种或重启终端时触发的安全提示,可能会让人感觉繁琐。在本次讨论中,我们将探索并实现一项功能,该功能通过跟踪登录尝试次数来识别可信用户。在达到一定次数的失败尝试后,应用程序将切换至高级登录流程,该流程还为可能忘记密码的用户提供密码恢复功能。此外,我们还将介绍如何将加密技术有效集成到管理面板中,以增强安全性。
preview
使用 LSTM 神经网络创建时间序列预测:规范化价格和令牌化时间

使用 LSTM 神经网络创建时间序列预测:规范化价格和令牌化时间

本文概述了一种使用每日范围对市场数据进行归一化并训练神经网络以增强市场预测的简单策略。开发的模型可以与现有的技术分析框架结合使用,也可以单独使用,以帮助预测整体市场方向。任何技术分析师都可以进一步完善本文中概述的框架,以开发适用于手动和自动交易策略的模型。
preview
使用 MetaTrader 5 在 Python 中查找自定义货币对形态

使用 MetaTrader 5 在 Python 中查找自定义货币对形态

外汇市场是否存在重复的形态和规律?我决定使用 Python 和 MetaTrader 5 创建自己的形态分析系统。一种数学和编程的共生关系,用于征服外汇。
preview
使用莱文贝格-马夸尔特(Levenberg-Marquardt,LM)算法训练多层感知器

使用莱文贝格-马夸尔特(Levenberg-Marquardt,LM)算法训练多层感知器

本文介绍了一种用于训练前馈神经网络的莱文贝格-马夸尔特(Levenberg-Marquardt,LM)算法的实现。与Python的scikit-learn库中的算法进行性能比较分析。初步探讨更简便的学习方法,如梯度下降、带动量的梯度下降和随机梯度下降。