有关MetaTrader 5手动和算法交易的文章

icon

这个类别的特色文章,涵盖了交易的所有方面 - 从手动到全自动交易,从 EA 思路到利用 MQL5 向导 创建交易机器人。仓位管理,交易事件处理以及资金管理 - 这些组成部分都在这些文章里覆盖。

学习 如何复制交易信号,如何提供不间断的 EA 操作,如何创建交易机器人,如何在 Linux 和 MacOS 上运行 MetaTrader,什么是社群交易,以及如何订购交易机器人。

添加一个新的文章
最近 | 最佳
preview
算法交易中的风险管理器

算法交易中的风险管理器

本文的目标是证明在算法交易中使用风险管理器的必要性,并在一个单独的类中实现控制风险的策略,以便每个人都可以验证标准化的风险管理方法在金融市场日内交易和投资中的有效性。在本文中,我们将为算法交易创建一个风险管理类。本文是上一篇文章的延续,在前文中我们讨论了为手动交易创建风险管理器。
preview
MQL5 交易工具包(第 1 部分):开发仓位管理 EX5 库

MQL5 交易工具包(第 1 部分):开发仓位管理 EX5 库

了解如何创建面向开发人员的工具包,使用 MQL5 管理各种仓位操作。在本文中,我将演示如何创建一个函数库 (ex5),以执行从简单到高级的仓位管理操作,包括自动处理和报告使用 MQL5 处理仓位管理任务时出现的各种错误。
preview
构建K线图趋势约束模型(第8部分):EA的开发(一)

构建K线图趋势约束模型(第8部分):EA的开发(一)

在本文中,我们将基于前文创建的指标,开发我们的第一个由MQL5语言编写的EA。我们将涵盖实现自动化交易所需的所有功能,包括风险管理。这将极大地帮助用户从手动交易转变为自动化交易系统。
preview
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLMs 开发和测试交易策略(一)- 微调

将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLMs 开发和测试交易策略(一)- 微调

随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
preview
通过应用程序了解MQL5中的函数

通过应用程序了解MQL5中的函数

函数在任何编程语言中都是至关重要的东西,它有助于开发人员应用(DRY)的概念,这意味着不要重复自己,还有许多其他好处。在本文中,您将找到更多关于函数的信息,以及我们如何使用简单的应用程序在MQL5中创建自己的函数,这些应用程序可以在任何系统中使用或调用。您必须在不使事情复杂化的情况下丰富您的交易系统。
preview
MQL5 交易策略自动化(第十部分):开发趋势盘整动量策略

MQL5 交易策略自动化(第十部分):开发趋势盘整动量策略

在本文中,我们将基于MQL5开发趋势盘整动量策略EA。我们将结合双移动平均线交叉与 RSI 和 CCI 动量过滤器来生成交易信号。我们还将对EA进行回测,以及为提升其在真实交易环境下的表现而进行的优化。
preview
构建K线趋势约束模型(第九部分):多策略EA(2)

构建K线趋势约束模型(第九部分):多策略EA(2)

理论上,可以集成至EA中的策略数量没有上限。然而,每新增一种策略都会提升算法复杂度。通过融合多策略架构,EA能够更灵活地适应不同市场环境,从而可能提升整体盈利能力。今天,我们将探讨如何通过MQL5实现理查德·唐奇安(Richard Donchian)的经典通道突破策略,以此进一步拓展我们的趋势约束型EA功能体系。
preview
开发回放系统 — 市场模拟(第 07 部分):首次改进(II)

开发回放系统 — 市场模拟(第 07 部分):首次改进(II)

在上一篇文章中,我们针对复现系统进行了一些修复并加入了测试,以确保可能的最佳稳定性。 我们还着手为这个系统创建和使用配置文件。
preview
同时交易多种工具时平衡风险

同时交易多种工具时平衡风险

本文将帮助初学者从头开始编写一个脚本的实现,用于在同时交易多种工具时平衡风险。此外,它还可以为有经验的用户提供新的思路,使他们可以根据本文提出的方案来实现自己的解决方案。
preview
逆公允价值缺口(IFVG)交易策略

逆公允价值缺口(IFVG)交易策略

当价格回到先前确定的公允价值缺口位置,且未表现出预期的支撑或阻力反应,而是无视该缺口时,便出现了逆公允价值缺口(IFVG)。这种“无视”现象可能预示着市场方向的潜在转变,并为反向交易提供优势。在本文中,我将介绍自己开发的量化方法,以及如何将IFVG作为一种策略,应用于MetaTrader 5智能交易系统(EA)中。
preview
基于隐马尔可夫模型的趋势跟踪波动率预测

基于隐马尔可夫模型的趋势跟踪波动率预测

隐马尔可夫模型(HMMs)是强大的统计工具,可通过分析可观测的价格波动来识别潜在的市场状态。在交易领域,隐马尔可夫模型通过建模和预测市场状态的转变,可提升波动率预测的准确性,并为趋势跟踪策略提供依据。在本文中,我们将完整介绍一种趋势跟踪策略的开发流程,该策略利用隐马尔可夫模型预测波动率,并将其作为交易信号的过滤条件。
preview
MQL5 中的高级变量和数据类型

MQL5 中的高级变量和数据类型

不仅在 MQL5 编程中,在任何编程语言中,变量和数据类型都是非常重要的主题。MQL5 变量和数据类型可分为简单类型和高级类型。在这篇文章中,我们将识别并学习高级类型,因为我们在前一篇文章中已经提到过简单类型。
preview
在 MQL5 中创建做市商算法

在 MQL5 中创建做市商算法

做市商是如何运作的?让我们探讨一下这个问题,创建一个初级的做市商算法。
preview
带有预测性的三角套利

带有预测性的三角套利

本文简化了三角套利的过程,向您展示如何利用预测和专业软件更明智地进行货币交易,即使您是新手也能轻松入门。准备好凭借专业知识进行交易了吗?
preview
使用 MetaTrader 5 的 Python 高频套利交易系统

使用 MetaTrader 5 的 Python 高频套利交易系统

在本文中,我们将创建一个在经纪商眼中仍然合法的套利系统,在外汇市场上创建数千个合成价格,对其进行分析,并成功交易以获取利润。
preview
软件开发和 MQL5 中的设计模式(第 2 部分):结构模式

软件开发和 MQL5 中的设计模式(第 2 部分):结构模式

在了解了设计模式适用于 MQL5 和其他编程语言,并且对于开发人员开发可扩展、可靠的应用程序有多么重要之后,我们将在本文中继续介绍设计模式。我们将学习另一种类型的设计模式,即结构模式,了解如何利用我们所拥有的类组成更大的结构来设计系统。
preview
离散哈特莱变换

离散哈特莱变换

在本文中,我们将探讨频谱分析和信号处理的方法之一——离散哈特莱变换(discrete Hartley transform,DHT)。它可以过滤信号,分析它们的频谱等等。DHT的性能不亚于离散傅立叶变换(discrete Fourier transform,DFT)。然而,与DFT不同的是,DHT只使用实数,这使得它在实践中更方便实现,并且它的应用结果更直观。
preview
开发先进的 ICT 交易系统:在指标中实现订单区块

开发先进的 ICT 交易系统:在指标中实现订单区块

在本文中,我们将学习如何创建一个指标来检测、绘制订单区块并提醒订单块的缓解。我们还将详细研究如何在图表上识别这些区块,设置准确的提醒,并使用矩形可视化它们的位置,以更好地了解价格行为。该指标将成为遵循聪明钱概念和内圈交易者(ICT,Inner Circle Trader)方法的交易者的关键工具。
preview
在MQL5中开发马丁格尔(Martingale)区域恢复策略

在MQL5中开发马丁格尔(Martingale)区域恢复策略

本文详细探讨了创建基于区域恢复交易算法的EA需要实施的步骤。这有助于自动化该系统,从而为算法交易者节省时间。
preview
在 MQL5 中自动化交易策略(第 13 部分):构建头肩形态交易算法

在 MQL5 中自动化交易策略(第 13 部分):构建头肩形态交易算法

在本文中,我们将自动化 MQL5 中的头肩形态。我们分析其架构,实现一个用于检测和交易该形态的 EA,并对结果进行回测。这个过程揭示了一个具有改进空间的实用交易算法。
preview
数据科学和机器学习(第 16 部分):全新面貌的决策树

数据科学和机器学习(第 16 部分):全新面貌的决策树

在我们的数据科学和机器学习系列的最新一期中,深入到错综复杂的决策树世界。本文专为寻求策略洞察的交易者量身定制,全面回顾了决策树在分析市场趋势中所发挥的强大作用。探索这些算法树的根和分支,解锁它们的潜力,从而强化您的交易决策。加入我们,以全新的视角审视决策树,并探索它们如何在复杂的金融市场航行中成为您的盟友。
preview
日内交易:拉里·康纳斯(Larry Connors)RSI2均值回归策略

日内交易:拉里·康纳斯(Larry Connors)RSI2均值回归策略

拉里·康纳斯(Larry Connors)是知名交易员与量化交易领域权威作家,其最著名的成果之一是2周期相对强弱指数(RSI2)策略。该指标通过捕捉短期超买超卖信号,辅助判断市场反转时机。在本文中,我们将首先阐述研究契机,随后在MQL5中复现康纳斯的三大经典策略,并应用于标普500指数差价合约(CFD)的日内交易场景。
preview
开发多币种 EA 交易系统(第 14 部分):风险管理器的适应性交易量变化

开发多币种 EA 交易系统(第 14 部分):风险管理器的适应性交易量变化

之前开发的风险管理器仅包含基本功能,让我们试着探讨其可能的开发方式,使我们能够在不干扰交易策略逻辑的情况下改善交易结果。
preview
MQL5自动化交易策略(第十一部分):开发多层级网格交易系统

MQL5自动化交易策略(第十一部分):开发多层级网格交易系统

在本文中,我们将使用MQL5开发一款多层级网格交易系统EA,重点探讨网格交易策略背后的架构与算法设计。我们将研究多层网格逻辑的实现方式以及应对不同市场状况的风险管理技术。最后,我们将提供详尽的解释和实用技巧,指导您完成自动化交易系统的构建、测试与优化。
preview
在 MQL5 中创建交互式图形用户界面(第 2 部分):添加控制和响应

在 MQL5 中创建交互式图形用户界面(第 2 部分):添加控制和响应

通过动态功能增强 MQL5 图形用户界面(GUI)面板,可以大大改善用户的交易体验。通过整合互动元素、悬停效果和实时数据更新,该面板成为现代交易者的强大工具。
preview
构建K线图趋势约束模型(第一部分):针对EA和技术指标

构建K线图趋势约束模型(第一部分):针对EA和技术指标

本文面向初学者和专业的MQL5开发者。它提供了一段代码,用于定义并限制信号生成指标仅在较长的时间框架的趋势中运行。通过这种方式,交易者可以通过融入更广泛的市场视角来增强他们的策略,从而可能产生更稳健和可靠的交易信号。
preview
MQL5自动化交易策略(第九部分):构建亚洲盘突破策略的智能交易系统(EA)

MQL5自动化交易策略(第九部分):构建亚洲盘突破策略的智能交易系统(EA)

在本文中,我们将在MQL5中开发一款适用于亚洲盘突破策略的智能交易系统(EA),用来计算亚洲时段的高低价以及使用移动平均线(MA)进行趋势过滤。同时实现动态对象样式、用户自定义时间输入和完善的风险管理。最后演示回测与优化技术,进一步打磨策略表现。
preview
MQL5 简介(第 6 部分):MQL5 中的数组函数新手指南 (二)

MQL5 简介(第 6 部分):MQL5 中的数组函数新手指南 (二)

开始我们 MQL5 旅程的下一阶段。在这篇深入浅出、适合初学者的文章中,我们将探讨其余的数组函数,揭开复杂概念的神秘面纱,让您能够制定高效的交易策略。我们将讨论 ArrayPrint、ArrayInsert、ArraySize、ArrayRange、ArrarRemove、ArraySwap、ArrayReverse 和 ArraySort。利用这些基本的数组函数,提升您的算法交易专业知识。加入我们的精通 MQL5 之路吧!
preview
开发多币种 EA 交易(第 17 部分):为真实交易做进一步准备

开发多币种 EA 交易(第 17 部分):为真实交易做进一步准备

目前,我们的 EA 使用数据库来获取交易策略单个实例的初始化字符串。然而,这个数据库相当大,包含许多实际 EA 操作不需要的信息。让我们尝试在不强制连接到数据库的情况下确保 EA 的功能。
preview
MetaTrader 5 和 R 进行算法交易新手指南

MetaTrader 5 和 R 进行算法交易新手指南

当我们揭开 R 和 MetaTrader 5 无缝结合的艺术面纱时,您将开始一场金融分析与算法交易的精彩探索。本文是您将 R 语言中的分析技巧与 MetaTrader 5 强大的交易功能连接起来的指南。
preview
MQL5交易策略自动化(第八部分):构建基于蝴蝶谐波形态的智能交易系统(EA)

MQL5交易策略自动化(第八部分):构建基于蝴蝶谐波形态的智能交易系统(EA)

在本文中,我们将构建一个MQL5智能交易系统(EA),用于检测蝴蝶谐波形态。我们会识别关键转折点,并验证斐波那契(Fibonacci)水平以确认该形态。之后,我们会在图表上可视化该形态,并在得到确认时自动执行交易。
preview
开发回放系统 — 市场模拟(第 11 部分):模拟器的诞生(I)

开发回放系统 — 市场模拟(第 11 部分):模拟器的诞生(I)

为了依据数据形成柱线,我们必须放弃回放,并开始研发一款模拟器。 我们将采用 1-分钟柱线,因为它们所需的难度最小。
preview
如何使用MQL5的控件类创建交互式仪表板/面板(第一部分):设置面板

如何使用MQL5的控件类创建交互式仪表板/面板(第一部分):设置面板

在本文中,我们将使用MQL5的控件类创建一个交互式交易仪表板,旨在简化交易操作。该面板包含标题、用于交易、平仓和信息的导航按钮,以及用于执行交易和管理仓位的专用操作按钮。到文章结束时,你将拥有一个基础面板,为未来的扩展做好准备。
preview
开发回放系统 — 市场模拟(第 16 部分):新的类系统

开发回放系统 — 市场模拟(第 16 部分):新的类系统

我们需要更好地组织我们的工作。 代码正在快速增长,如果现在不做,那么以后就变得更不可能了。 我们分而治之。 MQL5 支持类,可协助实现此任务,但为此,我们需要对类有一定的了解。 大概最让初学者困惑的是继承。 在本文中,我们将看到如何以实用和简单的方式来运用这些机制。
preview
射箭算法(Archery Algorithm, AA)

射箭算法(Archery Algorithm, AA)

本文详细探讨了受射箭启发的优化算法——射箭算法(Archery Algorithm, AA),重点介绍了如何使用轮盘赌法(roulette method)作为选择“箭矢”目标区域的机制。该方法允许评估解决方案的质量,并选择最有希望的位置进行进一步的探究。
preview
如何利用 MQL5 创建简单的多币种智能交易系统(第 4 部分):三角移动平均线 — 指标信号

如何利用 MQL5 创建简单的多币种智能交易系统(第 4 部分):三角移动平均线 — 指标信号

本文中的多币种 EA 是智能交易系统或交易机器人,能从一个品种的图表里交易(开单、平单、及管理订单,例如:尾随止损和止盈)多个品种(货币对)。这次我们只会用到 1 个指标,即多时间帧或单一时间帧中的三角移动平均线。
preview
数据科学和机器学习(第 28 部分):使用 AI 预测 EURUSD 的多个期货

数据科学和机器学习(第 28 部分):使用 AI 预测 EURUSD 的多个期货

众多人工智能模型的惯常做法是预测单一未来值。不过,在本文中,我们将钻研运用机器学习模型的更强大技术,即预测多个未来值。这种方式被称为多步预测,它令我们不仅能够预测明天的收盘价,还可以预测后天、及更久的收盘价。通过掌握多步骤预测,交易者和数据科学家能够获得更深入的见解,并制定更明智的决策,从而显著增强他们的预测能力和策略计划。
preview
基于MQL5的自动化交易策略(第一部分):Profitunity系统(比尔·威廉姆斯的《交易混沌》)

基于MQL5的自动化交易策略(第一部分):Profitunity系统(比尔·威廉姆斯的《交易混沌》)

在本文中,我们研究了比尔·威廉姆斯(Bill Williams)的Profitunity系统,深入剖析其核心组成部分以及在混沌市场中独特的交易方法。我们指导读者在MQL5中实现该系统,专注于自动化关键指标和入场/出场信号。最后,我们对策略进行测试和优化,提供其在不同市场环境下的表现。
preview
构建和测试 Aroon 交易系统

构建和测试 Aroon 交易系统

在本文中,我们将学习在了解了 Aroon 指标(阿隆指标)的基础知识和基于该指标构建交易系统的必要步骤之后,如何构建 Aroon 交易系统。建立这个交易系统后,我们将对其进行测试,看看它是否能盈利,还是需要进一步优化。
preview
使用PatchTST机器学习算法预测未来24小时的价格走势

使用PatchTST机器学习算法预测未来24小时的价格走势

在本文中,我们将应用2023年发布的一种相对复杂的神经网络算法——PatchTST,来预测未来24小时的价格走势。我们将使用官方仓库的代码,并对其进行一些微小的修改,训练一个针对EURUSD(欧元兑美元)的模型,然后在Python和MQL5环境中应用该模型进行未来预测。