
种群优化算法:模拟各向同性退火(SIA)算法。第 II 部分
第一部分专注于众所周知、且流行的算法 — 模拟退火。我们已经通盘研究了它的利弊。本文的第二部分专注于算法的彻底变换,将其转变为一种新的优化算法 — 模拟各向同性退火(SIA)。

开发回放系统(第 40 部分):启动第二阶段(一)
今天我们将讨论回放/模拟器系统的新阶段。在这个阶段,谈话才会变得真正有趣,内容也相当丰富。我强烈建议您仔细阅读本文并使用其中提供的链接。这将帮助您更好地理解内容。

MQL5 交易工具包(第 1 部分):开发仓位管理 EX5 库
了解如何创建面向开发人员的工具包,使用 MQL5 管理各种仓位操作。在本文中,我将演示如何创建一个函数库 (ex5),以执行从简单到高级的仓位管理操作,包括自动处理和报告使用 MQL5 处理仓位管理任务时出现的各种错误。

DoEasy. 控件 (第 9 部分): 重新编排 WinForms 对象方法、RadioButton 和 Button 控件
在本文中,我将修复 WinForms 对象类方法的名称,并创建 WinForms 的对象 Button 和 RadioButton。

DoEasy. 控件 (第 25 部分): Tooltip WinForms 对象
在本文中,我将开始开发 Tooltip(工具提示)控件,以及函数库的新图形基元。 自然而然地,并非每个元素都有工具提示,但每个图形对象都有设置它的能力。

价格行为分析工具箱开发(第三部分):分析大师 —EA
从一个简单的交易脚本升级到一个功能完备的智能交易系统(EA),可以极大地提升您的交易体验。想象一下,拥有一个能够自动监控您的图表、在后台执行关键计算,并每隔两小时提供定期更新的系统。这款EA将配备分析关键指标的功能,而这些指标对于做出明智的交易决策至关重要,从而确保您能获取最新信息,以有效地调整您的交易策略。

理解编程范式(第 2 部分):面向对象方式开发价格行为智能系统
学习面向对象的编程范式,及其在 MQL5 代码中的应用。这是第二篇文章,更深入地讲解面向对象编程的规范,并通过一个实际示例提供上手经验。您将学习如何运用 EMA 指标,和烛条价格数据,将我们早期开发的过程化价格行为智能系统转换为面向对象的代码。

种群优化算法:微人工免疫系统(Micro-AIS)
本文研究一种基于人体免疫系统原理的优化方法 — 微人工免疫系统(Micro-AIS) - AIS 的修订版。Micro-AIS 使用更简单的免疫系统模型,和更简单的免疫信息处理操作。本文还讨论了 Micro-AIS 与传统 AIS 相比的优缺点。

群体优化算法:随机扩散搜索(SDS)
本文讨论了基于随机游走原理的随机扩散搜索(Stochastic Diffusion Search,SDS)算法,它是一种非常强大和高效的优化算法。该算法允许在复杂的多维空间中找到最优解,同时具有高收敛速度和避免局部极值的能力。

使用PSAR、Heiken Ashi和深度学习进行交易
本项目探索深度学习与技术分析的融合,用于在外汇市场测试交易策略。使用Python脚本进行快速实验,结合ONNX模型和传统指标(如PSAR、SMA和RSI)来预测欧元/美元(EUR/USD )的走势。之后,MQL5脚本将此策略引入实时环境,利用历史数据和技术分析帮助交易者做出明智的交易决策。回测结果表明,该策略秉持保守且稳健的运作理念,始终将风险管控置于首位,追求持续稳定的收益增长模式,摒弃激进逐利的行为。

DoEasy. 控件(第 二十九 部分):滚动条(ScrollBar)辅助控件
在本文中,我起始开发滚动条(ScrollBar)辅助控制元素,及其衍生对象 — 垂直和水平滚动条。 滚动条用于窗体内容(如果窗体超出容器)的滚动显示。 滚动条通常位于窗体的底部和右侧。 底部的水平滚动条可左右滚动内容,而垂直的则上下滚动内容。

使用MQL5和Python构建自优化EA(第三部分):破解Boom 1000算法
在本系列文章中,我们探讨了如何构建能够自主适应动态市场条件的EA。今天的文章中,我们将尝试调整一个深度神经网络以适应Deriv的合成市场。

重构经典策略(第九部分):多时间框架分析(第二部分)
在今天的讨论中,我们探讨了多时间框架分析的策略,以确定我们的人工智能(AI)模型在哪个时间框架上表现最优。分析结果表明,在欧元兑美元(EURUSD)货币对上,月度和小时时间框架生成的模型具有相对较低的误差率。我们利用这一优势,开发了一个交易算法,该算法在月度时间框架上进行人工智能预测,并在小时时间框架上执行交易。

DoEasy 函数库中的图形(第九十七部分):独立处理窗体对象移动
在本文中,我将研究实现鼠标独立拖动任何窗体对象。 此外,我还将在该函数库里补充错误消息和之前在终端和 MQL5 中实现的新成交属性。

借助成交量精准洞悉交易动态:超越传统OHLC图表
一种将成交量分析与机器学习技术(特别是LSTM神经网络)相结合的算法交易系统。与主要关注价格波动的传统交易方法不同,该系统强调成交量模式及其衍生指标,以预测市场走势。该方法包含三个主要组成部分:成交量衍生指标分析(一阶和二阶导数)、基于LSTM的成交量模式预测,以及传统技术指标。

MQL5 中的范畴论 (第 10 部分):幺半群组
本文是以 MQL5 实现范畴论系列的延续。 在此,我们将”幺半群-组“视为常规化幺半群集的一种手段,令它们在更广泛的幺半群集和数据类型中更具可比性。

开发回放系统(第 63 部分):玩转服务(四)
在本文中,我们将最终解决一分钟柱形上的分时报价模拟问题,以便它们能够与真实分时报价共存。这将帮助我们避免将来出现问题。此处提供的材料仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。

重塑经典策略(第四部分):标普500指数与美国国债
在本系列文章中,我们使用现代算法分析经典交易策略,以确定是否可以利用人工智能改进这些策略。在今天的文章中,我们将重新审视一种利用标普500指数与美国国债之间关系的经典交易方法。

矩阵分解基础知识
由于这里的目标是教学,我们将尽可能简单地进行。也就是说,我们将只实现所需的功能:矩阵乘法。今天您将看到,这足以模拟矩阵标量乘法。许多人在使用矩阵分解实现代码时遇到的最大困难是:与标量分解不同,在标量分解中,几乎所有情况下因子的顺序都不会改变结果,但使用矩阵时情况并非如此。

DoEasy. 控件 (第 18 部分): TabControl 中滚动选项卡的功能
在本文中,我将在 TabControl WinForms 对象中放置滚动标题控件的按钮,以防标题栏不适配控件的尺寸。 此外,我还将实现单击裁剪过的选项卡标题时,标题栏的平移。

密码锁算法(CLA)
在本文中,我们将重新考虑密码锁,将它们从安全机制转变为解决复杂优化问题的工具。让我们探索密码锁的世界,不再将其视为简单的安全装置,而是作为优化问题新方法的灵感来源。我们将创建一整群“锁”,其中每把锁都代表问题的一个独特解决方案。然后,我们将开发一种算法来“破解”这些锁,并从机器学习到交易系统开发等多个领域中找到最优解。

群体优化算法:思维进化计算(MEC)算法
本文探讨了MEC家族的算法,称为简单思维进化计算(Simple Mind Evolutionary Computation, Simple-MEC,SMEC)算法。该算法以其思想之美和易于实现而著称。

种群优化算法:社群进化(ESG)
我们将研究构造多种群算法的原理。作为该算法类别的一个示例,我们将查看新的自定义算法 — 社群进化(ESG)。我们将分析该算法的基本概念、种群互动机制和优势,并检查其在优化问题中的表现。

人工电场算法(AEFA)
本文介绍了一种受库仑静电力定律启发的人工电场算法(AEFA)。该算法通过模拟电学现象,利用带电粒子及其相互作用来解决复杂的优化问题。与其他基于自然法则的算法相比,AEFA具有独特性质。

开发回放系统(第 56 部分):调整模块
虽然模块之间已经可以正常交互,但在回放服务中尝试使用鼠标指标时会出现错误。在进入下一步之前,我们需要解决这个问题。此外,我们还将修复鼠标指标代码中的一个问题。所以这个版本经过适当的打磨,最终会稳定下来。

价格行为分析工具包开发(第一部分):图表投影仪
本项目旨在利用 MQL5 程序算法为 MetaTrader 5 开发一套全面的分析工具。这些工具包括脚本、指标、人工智能模型以及EA,能够自动地进行市场分析。在某些情况下,这些工具能够完全无需人工干预地进行高级分析,并将预测结果发送到相应的平台。绝不会错过任何机会。请与我一同探索构建一套强大的自定义市场分析工具箱。我们将从开发一个简单的 MQL5 程序开始,我将其命名为“图表投影仪”。

构建自优化型MQL5智能交易系统(EA)(第3部分):动态趋势跟踪与均值回归策略
金融市场通常被静态划分为震荡市或趋势市两种模式。这种简化分类虽便于短期交易决策。然而,却与真实市场行为脱节。在本文中,我们将深入探讨市场如何精准地在这两种模式间切换,并利用这方面的认知提升算法交易策略的可靠性。

DoEasy. 控件 (第 23 部分): 改进 TabControl 和 SplitContainer WinForms 对象
在本文中,我将添加与 WinForms 对象工作区域边界相关的新鼠标事件,并修复 TabControl 和 SplitContainer 控件功能中的一些瑕疵。