
Разработка системы репликации (Часть 68): Настройка времени (I)
Сегодня мы продолжим работу над тем, чтобы заставить указатель мыши сообщать нам об оставшемся времени бара в периоды низкой ликвидности. Хотя на первый взгляд кажется, что всё просто, на самом деле эта задача гораздо сложнее. Это связано с некоторыми препятствиями, которые нам придется преодолеть. Поэтому важно, чтобы вы хорошо усвоили материал из первой части данной серии, чтобы понять следующие части.

Построение модели для ограничения диапазона сигналов по тренду (Часть 8): Разработка советника (I)
В этой статье мы разработаем наш первый советник на MQL5 на основе индикатора, который мы создали в предыдущей статье. Мы рассмотрим все функции, необходимые для автоматизации процесса, включая управление рисками. Это позволит перейти от ручного выполнения сделок к автоматизированным системам.

Нейросети в трейдинге: Двухмерные модели пространства связей (Окончание)
Продолжаем знакомство с инновационным фреймворком Chimera — двухмерной моделью пространства состояний, использующей нейросетевые технологии для анализа многомерных временных рядов. Этот метод обеспечивает высокую точность прогнозирования при низких вычислительных затратах.

От начального до среднего уровня: Массивы и строки (II)
В этой статье я покажу, что хотя мы всё еще находимся на очень базовой стадии программирования, мы уже можем реализовать несколько интересных приложений. В данном случае мы создадим довольно простой генератор паролей. Таким образом мы сможем применить некоторые концепции, которые объяснялись до этого. Кроме того, мы рассмотрим, как можно разработать решения для некоторых конкретных проблем.

Фибоначчи на Форекс (Часть I): Проверяем отношения цены и времени
Как рынок ходит по отношениям, основанным на числах Фибоначчи? Эта последовательность, где каждое следующее число равно сумме двух предыдущих (1, 1, 2, 3, 5, 8, 13, 21...), не только описывает рост популяции кроликов. Рассмотрим гипотезу Пифагора о том, что все в мире подчиняется определенным соотношениям чисел...

Переосмысливаем классические стратегии (Часть IV): SP500 и казначейские облигации США
В этой серии статей мы анализируем классические торговые стратегии с использованием современных алгоритмов, чтобы определить, можно ли улучшить стратегию с помощью искусственного интеллекта (ИИ). В сегодняшней статье мы рассмотрим классический подход к торговле индексом SP500, используя его взаимосвязь с казначейскими облигациями США (US Treasury Notes).

Нейросети в трейдинге: Двухмерные модели пространства связей (Chimera)
Откройте для себя инновационный фреймворк Chimera — двухмерную модель пространства состояний, использующую нейросети для анализа многомерных временных рядов. Этот метод предлагает высокую точность с низкими вычислительными затратами, превосходя традиционные подходы и архитектуры Transformer.

Разработка системы репликации (Часть 67): Совершенствуем индикатор управления
В данной статье мы рассмотрим, чего можно добиться с помощью небольшой доработки кода. Данная доработка направлена на упрощение нашего кода, более активное использование вызовов библиотеки MQL5 и, прежде всего, на то, чтобы сделать его гораздо более стабильным, безопасным и простым для использования в другом коде, который мы будем разрабатывать в будущем.

Упрощаем торговлю на новостях (Часть 3): Совершаем сделки
В этой статье наш советник новостной торговли начнет открывать сделки на основе экономического календаря, хранящегося в нашей базе данных. Кроме того, мы улучшим графику советника, чтобы отображать более актуальную информацию о предстоящих событиях экономического календаря.

Разрабатываем мультивалютный советник (Часть 22): Начало перехода на горячую замену настроек
Если мы взялись за автоматизацию проведения периодической оптимизации, то надо позаботиться и об автоматическом обновлении настроек советников, которые уже работают на торговом счёте. Также это должно позволять запускать советник в тестере стратегий и менять его настройки в рамках одного прохода.

Алгоритм поиска по кругу — Circle Search Algorithm (CSA)
В статье представлен новый метаэвристический алгоритм оптимизации CSA (Circle Search Algorithm), основанный на геометрических свойствах окружности. Алгоритм использует принцип движения точек по касательным для поиска оптимального решения, сочетая фазы глобального исследования и локальной эксплуатации.

От начального до среднего уровня: Массивы и строки (I)
В сегодняшней статье мы начнем изучать некоторые особые типы данных. Для начала мы определим, что такое строка, и объясним, как использовать некоторые базовые процедуры. Это позволит нам работать с этим типом данных, который может быть интересным, хотя иногда и немного запутанным для новичков. Представленные здесь материалы предназначены только для обучения. Ни в коем случае нельзя рассматривать это приложение как окончательное, цели которого будут иные, кроме изучения представленных концепций.

Оптимизация портфеля на языках Python и MQL5
В этой статье рассмотрены передовые методы оптимизации портфеля с использованием языков Python и MQL5 на платформе MetaTrader 5. В ней демонстрируется, как разрабатывать алгоритмы для анализа данных, распределения активов и генерации торговых сигналов, подчеркивая значимость принятия решений на основе данных в современном финансовом менеджменте и снижении рисков.

Анализируем двоичный код цен на бирже (Часть II): Преобразуем в BIP39 и пишем GPT модель
Продолжаем попытки дешифровать движения цен... Как насчет лингвистического анализа "словаря рынка", который мы получим, преобразовав бинарный код цены в BIP39? В этой статье мы углубимся в инновационный подход к анализу биржевых данных и рассмотрим, как современные методы обработки естественного языка могут быть применены к языку рынка.

Автооптимизация тейк-профитов и параметров индикатора с помощью SMA и EMA
В статье представлен продвинутый советник для торговли на рынке Форекс, сочетающий машинное обучение с техническим анализом. Он предназначен для торговли акциями Apple с использованием адаптивной оптимизации, управления рисками и множества стратегий. Тестирование на исторических данных показывает многообещающие результаты, но также и значительные просадки, что указывает на потенциал для дальнейшего совершенствования.

Машинное обучение и Data Science (Часть 28): Прогнозирование множества будущих значений для EURUSD
Многие модели искусственного интеллекта заточены на прогнозирование одного единственного будущего значения. В этой статье мы посмотрим, как использовать модели машинного обучения для прогнозирования множества будущих значений. Такой подход, называемый многошаговым прогнозированием, позволяет предсказывать не только цену закрытия на завтра, но и на послезавтра и так далее. Несомненное преимущество многошагового прогнозирования для трейдеров и аналитиков данных — более широкий спектр информации для возможностей стратегического планирования.

От начального до среднего уровня: Приоритеты операторов
Это, несомненно, самый сложный вопрос, который можно объяснить исключительно теоретически. Поэтому я советую вам попрактиковаться с материалами, которые будут показаны здесь. Хотя на первый взгляд всё может показаться простым, данный вопрос с операторами можно понять только на практике в сочетании с постоянным изучением.

Возможности Мастера MQL5, которые вам нужно знать (Часть 31): Выбор функции потерь
Функция потерь (Loss Function) — это ключевая метрика алгоритмов машинного обучения, которая обеспечивает обратную связь для процесса обучения, количественно определяя, насколько хорошо данный набор параметров работает по сравнению с предполагаемым целевым значением. Мы рассмотрим различные форматы этой функции в пользовательском классе Мастера MQL5.

Стратегия торговли каскадами ордеров на основе пересечений EMA для MetaTrader 5
В статье представлен автоматизированный алгоритм на основе пересечений EMA для MetaTrader 5. Подробная информация обо всех аспектах демонстрации советника на языке MQL5 и его тестирования в MetaTrader 5, от анализа характеристик ценового диапазона до управления рисками.

Разработка системы репликации (Часть 66): Нажатие кнопки воспроизведения в сервисе (VII)
В этой статье мы реализуем первое решение, которое позволит нам определить когда на графике может появиться новый бар. Данное решение применимо в самых разных ситуациях. Понимание его развития поможет вам разобраться в нескольких аспектах. Представленные здесь материалы предназначены только для обучения. Ни в коем случае нельзя рассматривать это приложение как окончательное, цели которого будут иные, кроме изучения представленных концепций.

MQL5-советник, интегрированный в Telegram (Часть 2): Отправка сигналов из MQL5 в Telegram
В этой статье мы создадим MQL5-советник, интегрированный с Telegram, который отправляет в мессенджер сигналы пересечения скользящих средних. Мы подробно опишем процесс генерации торговых сигналов на основе пересечений скользящих средних, реализуем необходимый код на языке MQL5 и обеспечим бесперебойную работу интеграции. В результате мы получим систему, которая отправляет торговые оповещения в реальном времени непосредственно в групповой чат Telegram.

От начального до среднего уровня: Оператор FOR
В этой статье мы рассмотрим самые основные понятия оператора FOR. Всё, что будет здесь показано, нужно хорошо понять и усвоить. В отличие от других операторов, о которых мы говорили ранее, оператор FOR имеет некоторые особенности, которые быстро делают его очень сложным. Так что не позволяйте подобным материалам накапливаться. Приступайте к изучению и практике как можно скорее.

Алгоритм оптимизации Ройял Флеш — Royal Flush Optimization (RFO)
Авторский алгоритм Royal Flush Optimization предлагает новый взгляд на решение задач оптимизации, заменяя классическое бинарное кодирование генетических алгоритмов на секторный подход, вдохновленный принципами покера. RFO демонстрирует, как упрощение базовых принципов может привести к созданию эффективного и практичного метода оптимизации. В статье представлен детальный анализ алгоритма и результаты тестирования.

Нейросети в трейдинге: Мультизадачное обучение на основе модели ResNeXt (Окончание)
Продолжаем изучение фреймворка мультизадачного обучения на основе ResNeXt, который отличается модульностью, высокой вычислительной эффективностью и способностью выявлять устойчивые паттерны в данных. Использование единого энкодера и специализированных "голов" снижает риск переобучения модели и повышает качество прогнозов.

MQL5-советник, интегрированный в Telegram (Часть 1): Отправка сообщений из MQL5 в Telegram
В этой статье мы создадим советник на языке MQL5, отправляющий сообщения в Telegram с помощью бота. Мы настроим необходимые параметры, включая API-токен бота и идентификатор чата, а затем выполним HTTP-запрос POST для доставки сообщений. Затем мы обработаем ответ, чтобы обеспечить успешную доставку, и устраним возможные ошибки.

Разработка системы репликации (Часть 65): Нажатие кнопки воспроизведения в сервисе (VI)
В данной статье мы рассмотрим, как реализовать и решить проблему с указателем мыши при его использовании в сочетании с приложением репликации/моделирования. Представленные здесь материалы предназначены только для обучения. Ни в коем случае не рассматривайте это приложение как окончательное, цели которого будут иные, кроме изучения представленных концепций.

Разработка интерактивного графического пользовательского интерфейса на MQL5 (Часть 2): Добавление элементов управления и адаптивности
Расширение панели графического интерфейса на MQL5 с помощью динамических функций может существенно улучшить торговый опыт пользователей. Благодаря включению интерактивных элементов, эффектов наведения и обновлению данных в реальном времени эта панель становится мощным инструментом современного трейдера.

Нейросети в трейдинге: Мультизадачное обучение на основе модели ResNeXt
Фреймворк многозадачного обучения на основе ResNeXt оптимизирует анализ финансовых данных, учитывая их высокую размерность, нелинейность и временные зависимости. Использование групповой свертки и специализированных голов позволяет модели эффективно извлекать ключевые признаки исходных данных.

Биологический нейрон для прогнозирования финансовых временных рядов
Выстраиваем биологически верную систему нейронов для прогнозирования временных рядов. Внедрение плазмоподобной среды в архитектуру нейронной сети создало своеобразный "коллективный разум", где каждый нейрон влияет на работу системы не только через прямые связи, но и посредством дальнодействующих электромагнитных взаимодействий. Как покажет себя нейронная система моделирования мозга на рынке?

От начального до среднего уровня: Оператор SWITCH
В данной статье мы узнаем, как использовать оператор SWITCH в ее самой простой и базовой форме. Представленные здесь материалы предназначены только для обучения. Ни в коем случае не рассматривайте это приложение как окончательное, цели которого будут иные, кроме изучения представленных концепций.

Реализация советника Deus: Автоматическая торговля с RSI и скользящими средними в MQL5
В статье описываются шаги по внедрению советника Deus на основе индикаторов RSI и скользящей средней для управления автоматической торговлей.

Разработка системы репликации (Часть 64): Нажатие кнопки воспроизведения в сервисе (V)
В данной статье мы рассмотрим, как исправить две ошибки в коде. Однако я постараюсь объяснить их так, чтобы вы, начинающие программисты, поняли, что не всегда всё происходит так, как вы предполагали. Но это не повод отчаиваться, это возможность учиться. Представленные здесь материалы предназначены только для обучения. Ни в коем случае не рассматривайте это приложение как окончательное, цели которого иные, кроме изучения представленных концепций.

Индикатор прогноза волатильности при помощи Python
Прогнозируем будущую экстремальную волатильность при помощи бинарной классификации. Создаем индикатор прогноза экстремальной волатильности с использованием машинного обучения.

Разработка торговой системы на основе стакана цен (Часть I): индикатор
Стакан цен Depth of Market, несомненно, является очень важным элементом для выполнения быстрых сделок, особенно в алгоритмах высокочастотного трейдинга (HFT). В этой серии статей мы рассмотрим этот тип торговых событий, которые можно получить через брокера на многих торгуемых символах. Начнем с индикатора, в котором можно настроить цветовую палитру, положение и размер гистограммы, отображаемой непосредственно на графике. Мы также рассмотрим, как сгенерировать события BookEvent для тестирования индикатора в определенных условиях. Другие возможные темы для будущих статей - это хранение данных ценовых распределений и способы их использования в тестере стратегий.

Разработка системы репликации (Часть 63): Нажатие кнопки воспроизведения в сервисе (IV)
В этой статье мы наконец решим проблемы моделирования тиков на одноминутном баре, чтобы те могли сосуществовать с реальными тиками. Таким образом, мы избежим возникновения проблем в будущем. Представленный здесь контент предназначен только для образовательных целей. Ни в коем случае его не следует рассматривать как приложение, предназначенное для чего-то иного, кроме изучения и освоения представленных концепций.

Возможности Мастера MQL5, которые вам нужно знать (Часть 30): Пакетная нормализация в машинном обучении
Пакетная нормализация — это предварительная обработка данных перед их передачей в алгоритм машинного обучения, например, в нейронную сеть. При этом всегда следует учитывать тип активации, который будет использоваться алгоритмом. Мы рассмотрим различные подходы, которые можно использовать для извлечения выгоды с помощью советника, собранного в Мастере.

Нейросети в трейдинге: Иерархический двухбашенный трансформер (Окончание)
Мы продолжаем построение модели иерархического двухбашенного трансформера Hidformer, который предназначен для анализа и прогнозирования сложных многомерных временных рядов. В данной статье мы доведем начатую ранее работу до логического завершения с тестированием модели на реальных исторических данных.

От начального до среднего уровня: Директива Include
В сегодняшней статье мы поговорим о директиве компиляции, широко используемой в различных кодах, которые можно найти в MQL5. Хотя данную директива будет объяснена здесь довольно поверхностно, важно, чтобы вы начали понимать, как ее использовать, поскольку вскоре она станет незаменимой при переходе на более высокий уровень программирования. Представленные здесь материалы предназначены только для обучения. Ни в коем случае не рассматривайте это приложение как окончательное, цели которого будут иные, кроме изучения представленных концепций.

Диалектический поиск — Dialectic Search (DA)
Представляем Диалектический Алгоритм (DA) — новый метод глобальной оптимизации, вдохновленный философской концепцией диалектики. Алгоритм использует уникальное разделение популяции на спекулятивных и практических мыслителей. Тестирование показывает впечатляющую производительность до 98% в задачах малой размерности и общую эффективность 57.95%. Статья объясняет эти показатели и представляет детальное описание алгоритма и результаты экспериментов на различных типах функций.

От начального до среднего уровня: Операторы BREAK и CONTINUE
В данной статье мы рассмотрим, как использовать операторы RETURN, BREAK и CONTINUE в цикле. Понимание того, что делает каждый из этих операторов в потоке выполнения цикла, очень важно для работы с более сложными приложениями. Представленные здесь материалы предназначены только для обучения. Ни в коем случае не рассматривайте его как окончательное приложение, целью которого не является изучение представленных концепций.