Статьи по программированию на языках MQL4 и MQL5

icon

Изучайте язык программирования торговых стратегий MQL5 по опубликованным здесь статьям, большая часть которых написана вами - членами сообщества. Все статьи разделены на категории для быстрого поиска ответа по тому или иному аспекту программирования: "Интеграция", "Тестер", "Торговые стратегии" и многое другое.

Следите за новыми публикациями и участвуйте в их обсуждении на форуме!

Новая статья
последние | лучшие
preview
Разработка системы репликации (Часть 52): Всё усложняется (IV)

Разработка системы репликации (Часть 52): Всё усложняется (IV)

В этой статье мы изменим указатель мыши, чтобы иметь возможность взаимодействовать с индикатором управления, поскольку он работает нестабильно.
preview
Поиск произвольных паттернов валютных пар на Python с использованием MetaTrader 5

Поиск произвольных паттернов валютных пар на Python с использованием MetaTrader 5

Есть ли повторяющиеся паттерны и закономерности на валютном рынке? Я решил создать свою собственную систему анализа паттернов, используя Python и MetaTrader 5. Этакий симбиоз математики и программирования для покорения Форекса.
preview
Разработка системы репликации (Часть 51): Все усложняется (III)

Разработка системы репликации (Часть 51): Все усложняется (III)

В данной статье мы разберемся с одним из самых сложных вопросов сферы программирования на MQL5: как правильно получить ID графика, и почему иногда объекты не строятся на графике. Представленные здесь материалы носят исключительно дидактический характер. Ни в коем случае нельзя рассматривать приложение ни с какой иной целью, кроме как для изучения и освоения представленных концепций.
preview
Высокочастотная арбитражная торговая система на Python с использованием MetaTrader 5

Высокочастотная арбитражная торговая система на Python с использованием MetaTrader 5

Создаем легальную в глазах брокеров арбитражную систему, которая создает тысячи синтетических цен на рынке Форекс, анализирует их, и успешно торгует в прибыль.
preview
Разработка системы репликации (Часть 50): Все усложняется (II)

Разработка системы репликации (Часть 50): Все усложняется (II)

Мы решим проблему ID графиков, но в то же время начнем обеспечивать пользователю возможность использования личного шаблона, ориентированного на анализ того актива, который он хочет изучить и смоделировать. Представленные здесь материалы носят исключительно дидактический характер, ни в коем случае нельзя рассматривать их как приложение с никакой иной целью, кроме изучения и освоения представленных концепций.
preview
Нейросети в трейдинге: Контрастный Трансформер паттернов

Нейросети в трейдинге: Контрастный Трансформер паттернов

Контрастный Transformer паттернов осуществляет анализ рыночных ситуаций, как на уровне отдельных свечей, так и целых паттернов. Что способствует повышению качества моделирования рыночных тенденций. А применение контрастного обучения для согласования представлений свечей и паттернов ведет к саморегуляции и повышению точности прогнозов.
preview
Разработка системы репликации (Часть 49): Все усложняется (I)

Разработка системы репликации (Часть 49): Все усложняется (I)

В этой статье мы немного усложним ситуацию. Используя то, что было показано в предыдущих статьях, мы начнем открывать доступ к файлу шаблона, чтобы пользователь мог использовать свой собственный шаблон. Однако я буду вносить изменения постепенно, так как также буду дорабатывать индикатор, чтобы снизить нагрузку на MetaTrader 5.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 21): Тестирование с данными экономического календаря

Возможности Мастера MQL5, которые вам нужно знать (Часть 21): Тестирование с данными экономического календаря

Данные экономического календаря по умолчанию недоступны для тестирования с помощью советников в тестере стратегий. Мы рассмотрим, как базы данных могут помочь обойти это ограничение. В частности, мы увидим, как можно использовать базы данных SQLite для архивирования новостей Экономического календаря, чтобы советники, собранные с помощью Мастера, могли использовать их для генерации торговых сигналов.
preview
Нейронная сеть на практике: Первый нейрон

Нейронная сеть на практике: Первый нейрон

В этой статье мы начнем создавать нечто простое и скромное: нейрон. Мы запрограммируем его с помощью очень небольшого кода на MQL5. Нейрон прекрасно работал в тех тестах, которые я проводил. Вернемся немного назад в этой серии статей о нейронных сетях, чтобы понять, о чем я говорю.
preview
Нейросети в трейдинге: Анализ рыночной ситуации с использованием Трансформера паттернов

Нейросети в трейдинге: Анализ рыночной ситуации с использованием Трансформера паттернов

В анализе рыночной ситуации нашими моделями ключевым элементом является свеча. Тем не менее давно известно, что свечные паттерны могут помочь в прогнозировании будущих ценовых движений. И в этой статье мы познакомимся с методом, который позволяет интегрировать оба этих подхода.
preview
Построение экономических прогнозов: потенциальные возможности Python

Построение экономических прогнозов: потенциальные возможности Python

Как использовать экономические данные Всемирного банка для прогнозирования? Что будет если совместить модели ИИ и экономику?
preview
Нейронная сеть на практике: Зарисовка нейрона

Нейронная сеть на практике: Зарисовка нейрона

В этой статье мы построим базовый нейрон. И хотя с виду он кажется простым, а многие могут посчитать этот код совершенно тривиальным и бессмысленным, я хочу, чтобы вы получили удовольствие, изучая этот простой набросок нейрона. Не бойтесь изменять код, чтобы лучше его понять.
preview
Как опередить любой рынок (Часть II): Прогнозирование технических индикаторов

Как опередить любой рынок (Часть II): Прогнозирование технических индикаторов

Знаете ли вы, что можно добиться большей точности, прогнозируя определенные технические индикаторы, чем саму цену торгуемого символа? В статье рассматривается, как использовать это знание для разработки более эффективных торговых стратегий.
preview
Алгоритм оптимизации на основе искусственной экосистемы —  Artificial Ecosystem-based Optimization (AEO)

Алгоритм оптимизации на основе искусственной экосистемы — Artificial Ecosystem-based Optimization (AEO)

В статье рассматривается метаэвристический алгоритм AEO, который моделирует взаимодействия между компонентами экосистемы, создавая начальную популяцию решений и применяя адаптивные стратегии обновления, и подробно описываются этапы работы AEO, включая фазы потребления и разложения, а также различные стратегии поведения агентов. Статья знакомит с особенностями и преимуществами данного алгоритма.
preview
Нейронная сеть на практике: Псевдообратная (II)

Нейронная сеть на практике: Псевдообратная (II)

Поскольку эти статьи имеют образовательную цель и не направлены на то, чтобы показать реализацию конкретной функциональности, в данной статье мы поступим немного иначе. Вместо того, чтобы показывать, как применять факторизацию для получения обратной матрицы, мы сосредоточимся на факторизации псевдообратной. Причина заключается в том, что нет смысла показывать, как можно получить общий коэффициент, если мы можем сделать это особым способом. А еще лучше, если читатель сможет глубже понять, почему всё происходит именно так. Давайте теперь разберемся, почему со временем аппаратное обеспечение приходит на смену программному.
preview
Стратегия Билла Вильямса с индикаторами и прогнозами и без них

Стратегия Билла Вильямса с индикаторами и прогнозами и без них

Мы рассмотрим одну из известных стратегий Билла Вильямса и попытаемся улучшить ее с помощью индикаторов и прогнозов.
preview
Нейросети в трейдинге: Transformer с относительным кодированием

Нейросети в трейдинге: Transformer с относительным кодированием

Самоконтролируемое обучение может оказаться эффективным способом анализа больших объемов неразмеченных данных. Основным фактором успеха является адаптация моделей под особенности финансовых рынков, что способствует улучшению результативности традиционных методов. Эта статья познакомит вас с альтернативным механизмом внимания, который позволяет учитывать относительные зависимости и взаимосвязи между исходными данными.
preview
Нейронная сеть на практике: Псевдообратная (I)

Нейронная сеть на практике: Псевдообратная (I)

Сегодня мы начнем рассматривать, как можно реализовать вычисление псевдообратной на чистом языке MQL5. Код, который мы просмотрели, будет значительно сложнее для новичков, чем хотелось бы, и я всё еще думаю над тем, как объяснить его в простой форме. Поэтому пока считайте, что это возможность изучить необычный код. Спокойно и без спешки. Несмотря на то, что он не ориентирован на эффективное или быстрое применение, его цель - быть как можно более дидактичным.
preview
Добавляем пользовательскую LLM в торгового робота (Часть 3): Обучение собственной LLM с помощью CPU

Добавляем пользовательскую LLM в торгового робота (Часть 3): Обучение собственной LLM с помощью CPU

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
preview
Оптимизация африканскими буйволами — African Buffalo Optimization (ABO)

Оптимизация африканскими буйволами — African Buffalo Optimization (ABO)

Статья посвящена алгоритму оптимизации африканскими буйволами (ABO), метаэвристическому подходу, разработанному в 2015 году на основе уникального поведения этих животных. В статье подробно описаны этапы реализации алгоритма и его эффективность в поиске решений сложных задач, что делает его ценным инструментом в области оптимизации.
preview
Нейронная сеть на практике: Функция прямой линии

Нейронная сеть на практике: Функция прямой линии

В этой статье мы бегло просмотрим некоторые методы получения функции, которая может представлять наши данные в базе данных. Я не буду подробно останавливаться на том, как использовать статистику и исследования вероятностей для интерпретации результатов. Оставим это для тех, кто действительно хочет углубиться в математическую сторону вопроса. Тем не менее, изучение этих вопросов будет иметь решающее значение для понимания того, что связано с изучением нейронных сетей. Здесь мы довольно спокойно рассмотрим этот вопрос.
preview
Нейронная сеть на практике: Метод наименьших квадратов

Нейронная сеть на практике: Метод наименьших квадратов

В данной статье мы рассмотрим несколько идей, среди которых: как математические формулы оказываются сложнее с виду, чем при их реализации в коде. Помимо этого, рассмотрим как можно настроить квадрант графика, а также одну интересную проблему, которая может возникнуть в вашем MQL5-коде. Хотя, честно говоря, я еще не совсем понял, как это объяснить. Но всё равно я вам покажу, как исправить это в коде.
preview
Матричная факторизация: моделирование, которое более практично

Матричная факторизация: моделирование, которое более практично

Вы могли не заметить, что моделирование матриц оказалось немного странным, так как указывались не строки и столбцы, а только столбцы. Это выглядит очень странно при чтении кода, выполняющего матричные факторизации. Если вы ожидали увидеть указанные строки и столбцы, то могли бы запутаться при попытке выполнить факторизацию. Более того, данный способ моделирования матриц не самый лучший. Это связано с тем, что когда мы моделируем матрицы таким образом, то сталкиваемся с некими ограничениями, которые заставляют нас использовать другие методы или функции, которые не были бы необходимы, если бы моделирование осуществлялось более подходящим способом.
preview
Нейросети в трейдинге: Управляемая сегментация (Окончание)

Нейросети в трейдинге: Управляемая сегментация (Окончание)

Продолжаем, начатую в предыдущей статье работу, по построению фреймворка RefMask3D средствами MQL5. Данный фреймворк разработан для всестороннего изучения мультимодального взаимодействия и анализа признаков в облаке точек, с последующей идентификацией целевого объекта на основе описания, предоставленного на естественном языке.
preview
Переосмысливаем классические стратегии: Нефть

Переосмысливаем классические стратегии: Нефть

В этой статье мы пересмотрим классическую стратегию торговли сырой нефтью с целью ее усовершенствования за счет использования алгоритмов машинного обучения с учителем. Мы построим модель наименьших квадратов для прогнозирования будущих цен на нефть марки Brent на основе разницы между ценами на нефть марки Brent и WTI. Наша цель — найти опережающий индикатор будущих изменений цен на нефть марки Brent.
preview
Разработка системы репликации (Часть 48): Концепции для понимания и осмысления

Разработка системы репликации (Часть 48): Концепции для понимания и осмысления

Как насчет изучения чего-то нового? В этой статье вы узнаете, как преобразовывать скрипты в сервисы, и почему полезно это делать.
preview
Прогнозирование валютных курсов с использованием классических методов машинного обучения: Логит и Пробит модели

Прогнозирование валютных курсов с использованием классических методов машинного обучения: Логит и Пробит модели

Предпринята попытка построить торговый эксперт для предсказания котировок валютных курсов. За основу алгоритма взяты классические модели классификации — логистическая и пробит регрессия. В качестве фильтра торговых сигналов используется критерий отношения правдоподобия.
preview
Нейросети в трейдинге: Управляемая сегментация

Нейросети в трейдинге: Управляемая сегментация

Предлагаем познакомиться с методом комплексного мультимодального анализа взаимодействия и понимания признаков.
preview
Введение в MQL5 (Часть 7): Руководство для начинающих по созданию советников и использованию кода от ИИ в MQL5

Введение в MQL5 (Часть 7): Руководство для начинающих по созданию советников и использованию кода от ИИ в MQL5

В этой статье мы представим полное руководство для начинающих по созданию советников (EA) на MQL5. Вы найдете пошаговые инструкции по созданию экспертов с использованием псевдокода и возможностей кода, сгенерированного ИИ. Эта статья предназначена для тех, кто только начинает свой пусть в алготрейдинге, а также для всех, кто хочет улучшить навыки разработки эффективных советников.
preview
Разрабатываем мультивалютный советник (Часть 18): Автоматизация подбора групп с учётом форвард-периода

Разрабатываем мультивалютный советник (Часть 18): Автоматизация подбора групп с учётом форвард-периода

Продолжим автоматизировать шаги, которые ранее мы выполняли вручную. В этот раз вернёмся к автоматизации второго этапа, то есть выбора оптимальной группы одиночных экземпляров торговых стратегий, дополнив его возможностью учитывать результаты экземпляров на форвард-периоде.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 3): Обнаружение изменений трендов при использовании системы

Построение модели для ограничения диапазона сигналов по тренду (Часть 3): Обнаружение изменений трендов при использовании системы

В этой статье рассматривается, как экономические новости, поведение инвесторов и различные факторы могут влиять на развороты рыночных трендов. Статья включает видео с пояснениями и внедряет MQL5-код в программу для обнаружения разворотов тренда, оповещения и принятия соответствующих мер в зависимости от рыночных условий.
preview
Алгоритм искусственного орошения — Artificial Showering Algorithm (ASHA)

Алгоритм искусственного орошения — Artificial Showering Algorithm (ASHA)

В статье представлен Алгоритм Искусственного Орошения (ASHA) – новый метаэвристический метод, разработанный для решения общих задач оптимизации. Основанный на моделировании процессов потоков и накопления воды, этот алгоритм выстраивает концепцию идеального поля, в котором каждая единица ресурса (вода) вызывается для поиска оптимального решения. Узнайте, как ASHA адаптирует принципы потока и накопления для эффективного распределения ресурсов в условиях поискового пространства, а также познакомьтесь с его реализацией и итогами тестирования.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 20): Символьная регрессия

Возможности Мастера MQL5, которые вам нужно знать (Часть 20): Символьная регрессия

Символьная регрессия — это форма регрессии, которая начинается с минимальных или нулевых предположений относительно того, как будет выглядеть базовая модель, отображающая изучаемые наборы данных. Несмотря на то, что ее можно реализовать с помощью байесовских методов или нейронных сетей, мы рассмотрим, как реализация с использованием генетических алгоритмов может помочь настроить класс сигналов советника, пригодный для использования в Мастере MQL5.
preview
Нейросети в трейдинге: Сегментация данных на основе уточняющих выражений

Нейросети в трейдинге: Сегментация данных на основе уточняющих выражений

В процессе анализа рыночной ситуации мы делим её на отдельные сегменты, выявляя ключевые тенденции. Однако традиционные методы анализа часто фокусируются на одном аспекте, что ограничивает восприятие. В данной статье мы познакомимся с методом, позволяющем выделять несколько объектов, что даёт более полное и многослойное понимание ситуации.
preview
Треугольный арбитраж с прогнозами

Треугольный арбитраж с прогнозами

В статье объясняется, как использовать треугольный арбитраж, а также как применять прогнозы и специализированное программное обеспечение для более разумной торговли валютами, даже если вы новичок на рынке. Готовы торговать как профессионалы?
preview
DoEasy. Сервисные функции (Часть 3): Паттерн "Внешний бар"

DoEasy. Сервисные функции (Часть 3): Паттерн "Внешний бар"

В статье разработаем паттерн Price Action "Внешний Бар" в библиотеке DoEasy и оптимизируем методы доступа к управлению ценовыми паттернами. Кроме того, проведём работу по исправлению ошибок и недоработок, выявленных при тестировании библиотеки.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 19): Байесовский вывод

Возможности Мастера MQL5, которые вам нужно знать (Часть 19): Байесовский вывод

Байесовский вывод — это применение теоремы Байеса для обновления вероятностной гипотезы по мере поступления новой информации. Это намекает на необходимость адаптации в анализе временных рядов, и поэтому мы рассмотрим, как мы могли бы использовать его при создании пользовательских классов не только применительно к сигналам, но и для управления капиталом и трейлинг-стопами.
preview
Оптимизация атмосферными облаками — Atmosphere Clouds Model Optimization (ACMO): Практика

Оптимизация атмосферными облаками — Atmosphere Clouds Model Optimization (ACMO): Практика

В данной статье мы продолжим погружение в реализацию алгоритма ACMO (Atmospheric Cloud Model Optimization). В частности, обсудим два ключевых аспекта: перемещение облаков в регионы с низким давлением и моделирование процесса дождя, включая инициализацию капель и распределение их между облаками. Мы также разберем другие методы, которые играют важную роль в управлении состоянием облаков и обеспечении их взаимодействия с окружающей средой.
preview
Нейросети в трейдинге: Безмасочный подход к прогнозированию ценового движения

Нейросети в трейдинге: Безмасочный подход к прогнозированию ценового движения

В данной статье предлагаем познакомиться с методом Mask-Attention-Free Transformer (MAFT) и его применение в области трейдинга. В отличие от традиционных Transformer, требующих маскирования данных при обработке последовательностей, MAFT оптимизирует процесс внимания, устраняя необходимость в маскировании, что значительно повышает вычислительную эффективность.
preview
Оптимизация атмосферными облаками — Atmosphere Clouds Model Optimization (ACMO): Теория

Оптимизация атмосферными облаками — Atmosphere Clouds Model Optimization (ACMO): Теория

Статья посвящена метаэвристическому алгоритму Atmosphere Clouds Model Optimization (ACMO), который моделирует поведение облаков для решения задач оптимизации. Алгоритм использует принципы генерации, движения и распространения облаков, адаптируясь к "погодным условиям" в пространстве решений. Статья раскрывает, как метеорологическая симуляция алгоритма находит оптимальные решения в сложном пространстве возможностей и подробно описывает этапы работы ACMO, включая подготовку "неба", рождение облаков, их перемещение и концентрацию дождя.