Знакомство с языком MQL5 (Часть 16): Создание советников с использованием паттернов технического анализа
Эта статья знакомит новичков с созданием советника на языке MQL5, который выявляет классический паттерн технического анализа – "голову и плечи" – и торгует по нему. В статье рассматривается, как обнаружить паттерн, используя ценовое действие, нарисовать его на графике, установить уровни входа, стоп-лосса и тейк-профита, а также автоматизировать выполнение сделок на основе паттерна.
Нейросети в трейдинге: Пространственно-временная модель состояния для анализа финансовых данных (STSSM-блок)
В статье раскрывается внутренняя механика STSSM-блока и показано, как современные SSM-подходы можно адаптировать под событийную логику спайковых моделей, сохранив высокую скорость и выразительность представлений. Мы шаг за шагом поднимаемся по архитектуре, превращая строгую теорию авторского решения в практичный инструмент для анализа финансовых временных рядов.
Знакомство с языком MQL5 (Часть 15): Руководство для начинающих по созданию пользовательских индикаторов (IV)
В этой статье вы узнаете, как создать индикатор ценового действия на языке MQL5, сосредоточив внимание на ключевых точках, таких как минимум (L), максимум (H), более высокий минимум (HL), более высокий максимум (HH), более низкий минимум (LL) и более низкий максимум (LH) для анализа трендов. Вы также изучите, как выявлять зоны премии и дисконта, отмечать уровень коррекции 50% и использовать соотношение риска и вознаграждения для расчета целевых уровней прибыли. В статье также рассмотрено определение точек входа, уровней стоп-лосса (SL) и тейк-профита (TP) на основе структуры тренда.
Алгоритм дифференциального поиска — Differential Search Algorithm (DSA)
В статье рассматривается алгоритм дифференциального поиска DSA, имитирующий миграцию суперорганизма в поисках оптимальных условий обитания. Алгоритм использует гамма-распределение для генерации псевдо-стабильного блуждания и предлагает четыре стратегии выбора направления движения с тремя механизмами мутации координат. Какова будет производительность метода?
Знакомство с языком MQL5 (Часть 14): Руководство для начинающих по созданию пользовательских индикаторов (III)
Научитесь создавать индикатор Harmonic Pattern на языке MQL5 с использованием графических объектов. Узнайте, как обнаруживать точки свинга, применять уровни Фибоначчи и автоматизировать распознавание паттернов.
Моделирование рынка (Часть 16): Сокеты (X)
Мы близки к завершению данного испытания. Однако, прежде чем приступить, я хочу, чтобы вы попытались понять эти две статьи, данную и предыдущую. Так вы действительно поймете следующую статью, в которой я рассмотрю исключительно ту часть, которая касается программирования на MQL5. Но я также постараюсь сделать её понятной. Если вы не понимаете эти две последние статьи, то вам будет тяжело понять и следующую, потому что материалы накапливаются. Чем больше вещей нужно сделать, тем больше нужно создать и понять для достижения цели.
Нейросети в трейдинге: Пространственно-временная модель состояния для анализа финансовых данных (E-STMFlow)
Предлагаем познакомиться с фреймворком E-STMFlow, который эффективно обрабатывает потоки событий, извлекая информативные эмбеддинги, фильтруя шум и выявляя ключевые движения. Его архитектура позволяет выявлять сложные взаимосвязи между признаками и обеспечивает масштабируемость, точность и высокую вычислительную эффективность для интеллектуального анализа и прогнозирования.
Python + API LLM + MetaTrader 5: реальный опыт построения автономного торгового бота
Статья описывает создание MVP-прототипа автономного торгового бота для MetaTrader 5, использующего большие языковые модели (LLM) через API OpenRouter для анализа рынка и принятия торговых решений. Скрипт на Python получает исторические данные OHLCV, отправляет их в LLM для технического анализа на основе уровней поддержки/сопротивления и паттернов Price Action, после чего автоматически размещает ордера с заданными стоп-лоссом и тейк-профитом.
Разложение по динамическим модам в применении к одномерным временным рядам в языке MQL5
Разложение по динамическим модам (Dynamic mode decomposition, DMD) — метод, который обычно применяют к наборам многомерных данных. В этой статье мы демонстрируем применение DMD на одномерных временных рядах, выявляя его способность характеризовать ряды, а также делать прогнозы. При этом рассмотрим встроенную в MQL5 реализацию разложения по динамическим модам, уделяя особое внимание новому матричному методу DynamicModeDecomposition().
Разработка инструментария для анализа движения цен (Часть 15): Введение в теорию четвертей (I) — Скрипт Quarters Drawer
Точки поддержки и сопротивления являются критическими уровнями, которые сигнализируют о возможном развороте и продолжении тренда. Хотя определение этих уровней может оказаться непростой задачей, ее решение позволит вам хорошо ориентироваться на рынке. В статье представлен инструмент Quarters Drawer. Он поможет вам определить как основные, так и второстепенные уровни поддержки и сопротивления.
Обучаем нейросети на осцилляторах без подглядывания в будущее
В статье описывается подход к разметке сделок с помощью осцилляторов для моделей машинного обучения. Это позволяет избавиться от look ahead bias. Показано, что такая разметка не приводит к переобучению моделей, а стратегии продолжают работать продолжительное время.
Нейросети в трейдинге: Спайковая архитектура пространственно-временного анализа рынка (Окончание)
Фреймворк SDformerFlow превращает сложные события финансовых рядов в структурированные представления, позволяя модели видеть одновременно локальные колебания и глобальные тенденции. Многоуровневая U-структура обеспечивает согласованность прямого и обратного проходов, синхронизацию градиентов и устойчивость вычислений. В итоге SDformerFlow проявляет себя как мощный и гибкий инструмент для построения современных торговых систем.
Моделирование рынка (Часть 15): Сокеты (IX)
В этой статье мы расскажем об одном из возможных решений того, что мы пытались показать, то есть как позволить пользователю Excel выполнить действие в MetaTrader 5 без отправки ордеров, открытия или закрытия позиции. Идея заключается в том, что пользователь использует Excel для проведения фундаментального анализа какого-то символа. И что при использовании только Excel, можно указать советнику, работающему в MetaTrader 5, открыть или закрыть определенную позицию.
Знакомство с языком MQL5 (Часть 13): Руководство для начинающих по созданию пользовательских индикаторов (II)
Эта статья проведет вас через создание пользовательского индикатора Heikin Ashi с нуля и продемонстрирует, как интегрировать пользовательские индикаторы в советник. В статье рассматриваются расчеты индикаторов, логика исполнения сделок и методы управления рисками для улучшения автоматизированных торговых стратегий.
Трейдинг с экономическим календарем MQL5 (Часть 6): Автоматизация входа в сделку с анализом новостей и таймерами обратного отсчета
В этой статье мы реализуем автоматизированный вход в торговлю с использованием экономического календаря MQL5, применив настраиваемые фильтры и временные смещения для поиска новостей. Мы сравниваем прогнозные и предыдущие значения, чтобы определить, следует ли открывать сделку на покупку или продажу. Динамические таймеры обратного отсчета отображают оставшееся время до выхода новостей и автоматически сбрасываются после совершения сделки.
Моделирование рынка (Часть 14): Сокеты (VIII)
Многие программисты могут предположить, что нам следует отказаться от использования Excel и перейти непосредственно на Python, используя некоторые пакеты, позволяющие Python создавать Excel-файл, чтобы потом проанализировать результаты. Но, как уже говорилось в предыдущей статье, хотя это решение и является наиболее простым для многих программистов, оно не будет воспринято некоторыми пользователями. И в данном вопросе пользователь всегда прав. Мы, как программисты, должны найти способ заставить всё работать.
Разрабатываем менеджер терминалов (Часть 3): Получаем информацию о счёте и добавляем конфигурацию
Добавляем в наше веб-приложение возможность получения и отображения информации о торговых счетах терминалов: о балансе, прибыли, статусе подключения и другой важной информации. Также реализуем гибкую систему конфигурации, позволяющую управлять параметрами приложения через внешний JSON-файл, и улучшаем пользовательский интерфейс главной страницы.
Нейросети в трейдинге: Спайковая архитектура пространственно-временного анализа рынка (Энкодер)
В статье представлена адаптация фреймворка SDformerFlow, обеспечивающая высокую адаптивность за счёт интеграции спайкового внимания с многооконной свёрткой и взвешенным суммированием элементов Query. Архитектура позволяет каждой голове внимания обучать собственные параметры, что повышает точность и чувствительность модели к структуре анализируемых данных.
Моделирование рынка (Часть 09): Сокеты (III)
Сегодняшняя статья является продолжением предыдущей. В ней мы рассмотрим, как будет реализован советник, сосредоточившись в основном на том, как выполняется серверный код. Кода, приведенного в предыдущей статье, недостаточно для того, чтобы всё работало как надо, поэтому необходимо немного углубиться в него. Поэтому нужно прочитать обе статьи, чтобы лучше понять то, что произойдет.
Оптимизатор Бонобо — Bonobo Optimizer (BO)
В статье представлена реализация и анализ алгоритма Bonobo Optimizer, основанного на уникальных особенностях поведения приматов бонобо — динамической социальной структуре fission-fusion и трех стратегиях спаривания. Каковы интересные возможности этого метода?
Индикатор тепловой карты рынка на основе плотности простых чисел
Инновационный индикатор на основе теории простых чисел помогает находить сильные уровни разворота, которые не видят другие трейдеры. Тестирование на 10 активах показало: развороты в математически значимых зонах происходят в 1.5-1.8 раза чаще. Пять практических сценариев применения с конкретными правилами для фильтрации ложных пробоев и точного входа в рынок.
Моделирование рынка (Часть 08): Сокеты (II)
Как вам идея создать что-то практичное с помощью сокетов? В сегодняшней статье мы начнем создавать мини-чат. Давайте рассмотрим вместе, как это делается, - это будет очень интересно. Помните, что приведенный здесь код предназначен исключительно для образовательных целей. Не стоит использовать его в коммерческих целях или в готовых приложениях, так как он не обеспечивает безопасности передачи данных и можно увидеть содержимое, передаваемое по сокету.
Торгуем опционы без опционов (Часть 4): Более сложные опционные стратегии
В этой статье мы рассмотрим, как можно снизить риски (и возможно ли это сделать) для опционных стратегий, где изначально риск не ограничен. Это относится к стратегиям, основанным на продаже опционов, то есть к флэтовым. Также рассмотрим варианты фиксации прибыли для опционных стратегий, основанных на покупке опционов, то есть трендовых. Как всегда, добавим в наш эксперт новые полезные функции и улучшим старые.
Тенденции и традиции: Использование функций Радемахера в трейдинге
Несмотря на то, что функции, о которых пойдет речь, известны уже довольно давно, их применение в области трейдинга до сих пор остается terra incognita. В этой статье мы рассмотрим некоторые возможности, которые эти новые старые функции открывают для разработки торговых стратегий, и оценим их потенциал.
Нейросети в трейдинге: Спайковая архитектура пространственно-временного анализа рынка (SDformerFlow)
В статье представлена адаптация spiking-архитектуры SDformerFlow к задачам плотного анализа микродвижений цены. Пространственно-временная структура обеспечивает высокую детализацию, а спайковая логика — экономичность вычислений и способность работать в условиях разреженных, импульсных данных. В результате перед трейдером открывается инструмент, который фиксирует малейшие сдвиги ликвидности и формирует основу для более точных и стабильных решений в реальном времени.
Возможности Мастера MQL5, которые вам нужно знать (Часть 55): SAC с приоритетным воспроизведением опыта
Буферы воспроизведения в обучении с подкреплением особенно важны при использовании алгоритмов вне политики (off-policy), таких как DQN или SAC. Это выводит на первый план процесс выборки буфера памяти. В то время как параметры по умолчанию с SAC, например, используют случайный выбор из буфера, буферы с приоритетным воспроизведением опыта (Prioritized Experience Replay buffers) обеспечивают точную настройку путем выборки из буфера на основе оценки TD. Мы рассмотрим важность обучения с подкреплением и, как всегда, изучим только одну гипотезу (без перекрестной проверки) в созданном Мастером советнике.
Единый мультитаймфреймовый Ренко: Синтез временных измерений рынка
Статья представляет инновационную концепцию мультитаймфреймового Ренко-графика, который объединяет сигналы с четырёх временных масштабов (M5, M15, H1, H4) в единый синтетический инструмент. Система создаёт виртуальный символ в MetaTrader 5, используя EMA каждого таймфрейма для формирования композитного сигнала через три метода: простое среднее, взвешенное среднее и консенсус. Реализация включает адаптивный размер кирпича на основе ATR, работу в реальном времени и полную интеграцию с MetaTrader 5.
Введение в MQL5 (Часть 12): Руководство для начинающих по созданию пользовательских индикаторов
В статье мы создадим собственный индикатор на MQL5, применив проектный подход. Также мы рассмотрим индикаторные буферы, свойства и визуализацию трендов в виде понятного для новичков пошагового руководства.
Управление рисками (Часть 5): Интегрируем систему управления рисками в советник
В этой статье мы реализуем систему управления рисками, разработанную в предыдущих публикациях, и добавим индикатор Order Blocks, представленный в других статьях. Кроме того, будет проведено тестирование на исторических данных (backtest), чтобы можно было сравнить результаты с применением системы управления рисками и оценить влияние динамического риска.
Моделирование рынка (Часть 13): Сокеты (VII)
Когда мы разрабатываем что-то в xlwings или в любом другом пакете, позволяющем читать и писать непосредственно в Excel, мы должны заметить, что все программы, функции или процедуры выполняются, а затем завершают свою задачу. Они не остаются в цикле, и неважно, как сильно мы стараемся сделать всё по-другому.
Инженерия признаков с Python и MQL5 (Часть III): Угол наклона цены (2) Полярные координаты
В этой статье мы предпринимаем вторую попытку преобразовать изменения уровня цен на любом рынке в соответствующее изменение угла наклона. На этот раз мы выбрали более математически сложный подход, чем в первой попытке, и полученные нами результаты позволяют предположить, что изменение подхода, возможно, было правильным решением. Мы рассмотрим, как можно использовать полярные координаты для осмысленного расчета угла, образованного изменениями уровней цен, независимо от того, какой рынок вы анализируете.
Нейросети в трейдинге: Рекуррентное моделирование микродвижений рынка (Окончание)
Реализация фреймворка EV-MGRFlowNet демонстрирует его ключевые преимущества: модульность, устойчивость к рыночным колебаниям и способность к самостоятельной выработке стратегии. Эти особенности делают фреймворк мощным инструментом для анализа, прогнозирования и развития автономных торговых стратегий.
Алгоритм эволюции элитных кристаллов — Elite Crystal Evolution Algorithm (CEO-inspired): Практика
Экспериментальное исследование на стандартных бенчмарк-функциях выявляет преимущества и ограничения прямой адаптации комбинаторных алгоритмов. Статья содержит детальное описание механизмов алгоритма ECEA и результатов его тестирования.
Моделирование рынка (Часть 12): Сокеты (VI)
В данной статье мы рассмотрим, как решить некоторые проблемы и вопросы, возникающие при использовании кода, написанного на Python внутри других программ. А если говорить более конкретно, то мы покажем распространенную проблему, возникающую при использовании Excel в связке с MetaTrader 5, хотя для этого общения мы будем использовать Python. Однако у данной реализации есть небольшой недостаток. Это происходит не во всех, а только в некоторых конкретных случаях. Когда это происходит, необходимо понять причину. В сегодняшней статье мы начнем объяснять, как решить эту проблему.
Машинное обучение и Data Science (Часть 33): Pandas Dataframe в MQL5, упрощаем сбор данных для машинного обучения
При работе с моделями машинного обучения крайне важно обеспечить согласованность данных, используемых для обучения, проверки и тестирования. В этой статье мы создадим собственную версию библиотеки Pandas на языке MQL5, чтобы обеспечить единый подход к обработке данных машинного обучения и гарантировать, что одни и те же данные применяются внутри и вне MQL5, где и происходит большая часть обучения.
Автоматизация запуска терминала для выполнения сервисных задач
В статье рассмотрим возможность запуска терминала с конфигурационным файлом для выполнения автоматизированных рутинных задач, программную обработку такого запуска, и создадим полноценную систему автооптимизации советника средствами ОС Windows.
Нейросети в трейдинге: Рекуррентное моделирование микродвижений рынка (Энкодер)
Эта статья погружает читателя в самую суть фреймворка EV-MGRFlowNet, показывая, как его архитектура раскрывается в прикладной реализации под задачи финансового прогнозирования. Мы шаг за шагом строим продуманную связку модулей, способную улавливать тонкие временные закономерности и переводить их в осмысленные рыночные сигналы.
От новичка до эксперта: Утилита для управления параметрами
Представьте, что вы преобразовали традиционные входные свойства советника или индикатора в интерфейс управления графиком в режиме реального времени. Это обсуждение основано на нашей фундаментальной работе над индикатором Market Period Synchronizer, что знаменует собой значительную эволюцию в том, как мы визуализируем рыночные структуры на старших таймфреймах (HTF) и управляем ими. Здесь мы превращаем эту концепцию в полностью интерактивную утилиту — информационная панель, которая обеспечивает динамический контроль и улучшенную многопериодную визуализацию ценового движения непосредственно на графике. Присоединяйтесь к нам, и мы узнаем, как это нововведение меняет способ взаимодействия трейдеров со своими инструментами.
Моделирование рынка (Часть 11): Сокеты (V)
Мы приступаем к реализации связи между Excel и MetaTrader 5, но сначала необходимо понять некоторые важные моменты, так вам не придется ломать голову, пытаясь понять, почему что-то работает или нет. И прежде, чем вы нахмуритесь, глядя на интеграцию Python и Excel, давайте посмотрим, как с помощью xlwings можно (в некоторой степени) управлять MetaTrader 5 через Excel. То, что мы покажем здесь, будет в основном сконцентрировано на образовательных задачах. Но не думайте, что мы можем делать только то, что будет рассмотрено здесь.
Разработка динамического советника на нескольких парах (Часть 4): Корректировка риска на основе волатильности
На этом этапе мы настраиваем мультипарный советник так, чтобы адаптировать размер сделки и риск в реальном времени с помощью метрик волатильности, таких как ATR, что повышает согласованность, защиту и эффективность в различных рыночных условиях.