
Нейросети — это просто (Часть 79): Агрегирование запросов в контексте состояния (FAQ)
В предыдущей статье мы познакомились с одним из методом обнаружение объектов на изображении. Однако, обработка статического изображения несколько отличается от работы с динамическими временными рядами, к которым относится и динамика анализируемых нами цен. В данной статье я хочу предложить Вам познакомиться с методом обнаружения объектов на видео, что несколько ближе к решаемой нами задаче.

Изучение MQL5 — от новичка до профи (Часть IV): О массивах, функциях и глобальных переменных терминала
Статья является продолжением цикла для начинающих. В ней подробно рассказано о массивах данных, взаимодействии данных и функций, а также о глобальных переменных терминала, позволяющих обмениваться данными между разными MQL5 программами.

Интеграция ML-моделей с тестером стратегий (Заключение): Реализация регрессионной модели для прогнозирования цен
В данной статье описывается реализация регрессионной модели на основе дерева решений для прогнозирования цен финансовых активов. Мы уже провели подготовку данных, обучение и оценку модели, а также ее корректировку и оптимизацию. Однако важно отметить, что данная модель является лишь исследованием и не должна использоваться при реальной торговле.

Как разработать агент обучения с подкреплением на MQL5 с интеграцией RestAPI (Часть 1): Как использовать RestAPI в MQL5
В этой статье мы расскажем о важности интерфейсов программирования API для взаимодействия между различными приложениями и программными системами. В ней подчеркивается роль API в упрощении взаимодействия между приложениями, позволяя им эффективно обмениваться данными и функциональными возможностями.

Индикатор прогноза волатильности при помощи Python
Прогнозируем будущую экстремальную волатильность при помощи бинарной классификации. Создаем индикатор прогноза экстремальной волатильности с использованием машинного обучения.

Популяционные алгоритмы оптимизации: Алгоритм интеллектуальных капель воды (Intelligent Water Drops, IWD)
В статье рассматривается интересный алгоритм - интеллектуальные капли воды, IWD, подсмотренный у неживой природы, симулирующий процесс формирования русла реки. Идеи этого алгоритма позволили значительно улучшить прошлого лидера рейтинга - SDS, а нового лидера (модифицированный SDSm), как обычно, найдёте в архиве к статье.

Индикатор силы и направления тренда на 3D-барах
Рассмотрим новый подход к анализу рыночных трендов, основанный на трехмерной визуализации и тензорном анализе рыночной микроструктуры.

Реализация советника Deus: Автоматическая торговля с RSI и скользящими средними в MQL5
В статье описываются шаги по внедрению советника Deus на основе индикаторов RSI и скользящей средней для управления автоматической торговлей.

Нейросети — это просто (Часть 81): Анализ динамики данных с учетом контекста (CCMR)
В предыдущих работах мы всегда оценивали текущее состояния окружающей среды. При этом динамика изменения показателей, как таковая, всегда оставалась "за кадром". В данной статье я хочу познакомить Вас с алгоритмом, который позволяет оценить непосредственное изменение данных между 2 последовательными состояниями окружающей среды.

Как построить советник, работающий автоматически (Часть 09): Автоматизация (I)
Хотя создание автоматического советника не является очень сложной задачей, однако без необходимых знаний может быть допущено много ошибок. В этой статье мы рассмотрим, как построить первый уровень автоматизации: он заключается в создании триггера для активации безубытка и трейлинг-стопа.

Разработка MQTT-клиента для MetaTrader 5: методология TDD (Часть 5)
Статья является пятой частью серии, описывающей этапы разработки нативного MQL5-клиента для протокола MQTT 5.0. В этой части мы опишем структуру пакетов PUBLISH - как мы устанавливаем их флаги публикации (Publish Flags), кодируем строки названий тем и устанавливаем идентификаторы пакетов, когда это необходимо.

Машинное обучение и Data Science (Часть 26): Решающая битва в прогнозирование временных рядов — LSTM против GRU
В предыдущей статье мы рассмотрели простую рекуррентную нейронную сеть, которая, несмотря на свою неспособность понимать долгосрочные зависимости в данных, смогла разработать прибыльную стратегию. В этой статье мы поговорим о долгой кратковременной памяти (Long-Short Term Memoryю LSTM) и об управляемом рекуррентном блоке (Gated Recurrent Unit, GRU). Эти два подхода были разработаны для преодоления недостатков простой рекуррентной нейронной сети.

Оборачиваем ONNX-модели в классы
Объектно-ориентированное программирование позволяет создавать более компактный код, который легко читать и модифицировать. Представляем пример для трёх ONNX-моделей.

Автооптимизация тейк-профитов и параметров индикатора с помощью SMA и EMA
В статье представлен продвинутый советник для торговли на рынке Форекс, сочетающий машинное обучение с техническим анализом. Он предназначен для торговли акциями Apple с использованием адаптивной оптимизации, управления рисками и множества стратегий. Тестирование на исторических данных показывает многообещающие результаты, но также и значительные просадки, что указывает на потенциал для дальнейшего совершенствования.

Нейросети в трейдинге: Superpoint Transformer (SPFormer)
В данной статья предлагаем познакомиться с методом сегментации 3D-люъектов на основе Superpoint Transformer (SPFormer), который устраняет необходимость в промежуточной агрегации данных. Что ускоряет процесс сегментации и повышает производительность модели.

Теория категорий в MQL5 (Часть 18): Квадрат естественности
Статья продолжает серию о теории категорий, представляя естественные преобразования, которые являются ключевым элементом теории. Мы рассмотрим сложное на первый взгляд определение, затем углубимся в примеры и способы применения преобразований в прогнозировании волатильности.

Тип рисования DRAW_ARROW в мультисимвольных мультипериодных индикаторах
В статье рассмотрим рисование стрелочных мультисимвольных мультипериодных индикаторов. Доработаем методы класса для корректного отображения стрелок, отображающих данные стрелочных индикаторов, рассчитанных на символе/периоде, не соответствующих символу/периоду текущего графика.

Популяционные алгоритмы оптимизации: Алгоритм оптимизации спиральной динамики (Spiral Dynamics Optimization, SDO)
В статье представлен алгоритм оптимизации, основанный на закономерностях построения спиральных траекторий в природе, таких как раковины моллюсков - алгоритм оптимизации спиральной динамики, SDO. Алгоритм, предложенный авторами, был мной основательно переосмыслен и модифицирован, в статье будет рассмотрено, почему эти изменения были необходимы.

DoEasy. Элементы управления (Часть 25): WinForms-объект "Tooltip"
В статье начнём разработку элемента управления Tooltip ("всплывающая подсказка") и начнём создание новых графических примитивов для библиотеки. Естественно, не у каждого элемента есть всплывающая подсказка, но возможность её задать для него есть у каждого графического объекта.

Нейросети — это просто (Часть 91): Прогнозирование в частотной области (FreDF)
Мы продолжаем рассмотрение темы анализ и прогнозирования временных рядов в частотной области. И в данной статье мы познакомимся с новым методом прогнозирования в частотной области, который может быть добавлен к многим, изученным нами ранее, алгоритмам.

Нейросети в трейдинге: Универсальная модель генерации траекторий (UniTraj)
Понимание поведения агентов важно в разных областях, но большинство методов фокусируются на одной задаче (понимание, удаление шума, прогнозирование), что снижает их эффективность в реальных сценариях. В данной статье я предлагаю познакомиться с моделью, которая способна адаптироваться к решению различных задач.

Теория хаоса в трейдинге (Часть 2): Продолжаем погружение
Продолжаем погружение в теорию хаоса на финансовых рынках, и рассмотрим ее применимость к анализу валют и иных активов.

Введение в MQL5 (Часть 4): Структуры, классы и функции времени
В этой серии мы продолжаем раскрывать секреты программирования. В новой статье мы изучим в основы структур, классов и временных функций и получим новые навыки для эффективного программирования. Это руководство, возможно, будет полезно не только для новичков, но и для опытных разработчиков, поскольку упрощает сложные концепции, предоставляя ценную информацию для освоения MQL5. Продолжайте изучать новое, совершенствуйте навыки программирования и освойте мир алгоритмического трейдинга.

Построение экономических прогнозов: потенциальные возможности Python
Как использовать экономические данные Всемирного банка для прогнозирования? Что будет если совместить модели ИИ и экономику?

Мониторинг торговли с помощью Push-уведомлений — пример сервиса в MetaTrader 5
В статье рассмотрим создание программы сервиса для отправки уведомлений на смартфон о результатах торговли. В рамках статьи научимся работать со списками объектов Стандартной Библиотеки для организации выборки объектов по требуемым свойствам.

Парный трейдинг: Алготорговля с автооптимизацией на разнице Z-оценки
В этой статье разберем, что такое парный трейдинг и как происходит торговля на корреляциях. Также создадим советник для автоматизации парного трейдинга и добавим возможность автоматической оптимизации такого торгового алгоритма на исторических данных. Кроме того, в рамках проекта узнаем, как рассчитывать расхождения двух пар с помощью z-оценки.

GIT: Но что это?
В этой статье я представлю очень важный инструмент для разработчиков. Если вы не знакомы с GIT, прочтите эту статью, дабы получить представление о том, что он собой представляет, и как его использовать вместе с MQL5.

Разработка системы репликации - Моделирование рынка (Часть 20): ФОРЕКС (I)
Первоначальная цель данной статьи заключается не в охвате всех возможностей ФОРЕКС, а скорее в адаптации системы таким образом, чтобы вы могли совершить хотя бы одну репликацию рынка. Моделирование оставим для другого момента. Однако, если у нас нет тиков, а есть только бары, приложив немного усилий, мы можем смоделировать возможные сделки, которые могли произойти на рынке ФОРЕКС. Так будет до тех пор, пока мы не рассмотрим, как адаптировать тестер. Попытка работать с данными ФОРЕКС внутри системы без их модификации приводит к ошибкам диапазона.

Нейросети в трейдинге: Модели направленной диффузии (DDM)
Предлагаем познакомиться с моделями направленной диффузии, которые используют анизотропные и направленные шумы, зависящие от данных, в процессе прямой диффузии для захвата значимых графовых представлений.

Разработка торгового советника с нуля (Часть 16): Доступ к данным в Интернете (II)
Знание того, как вводить данные из Web в советник, не так очевидно, вернее, не так просто, чтобы это можно было сделать без понимания всех возможностей, которые есть в MetaTrader 5.

DoEasy. Элементы управления (Часть 19): Прокрутка вкладок в элементе TabControl, события WinForms-объектов
В статье создадим функционал для прокрутки заголовков вкладок в элементе управления TabControl при помощи кнопок управления прокруткой. Функционал будет работать для расположения заголовков вкладок в одну строку с любой из сторон элемента управления.

Возможности Мастера MQL5, которые вам нужно знать (Часть 27): Скользящие средние и угол атаки
Угол атаки (Angle of Attack) — популярный показатель, значение крутизны (steepness) которого, как считается, тесно связано с силой преобладающего тренда. Мы рассмотрим, как он обычно трактуется и применяется, и выясним, есть ли изменения, которые можно было бы внести в способ его измерения для улучшения торговой системы.

DoEasy. Элементы управления (Часть 11): WinForms-объекты — группы, WinForms-объект CheckedListBox
В статье рассмотрим группирование WinForms-объектов и создадим объект-список объектов CheckBox.

Нейросети в трейдинге: Transformer с относительным кодированием
Самоконтролируемое обучение может оказаться эффективным способом анализа больших объемов неразмеченных данных. Основным фактором успеха является адаптация моделей под особенности финансовых рынков, что способствует улучшению результативности традиционных методов. Эта статья познакомит вас с альтернативным механизмом внимания, который позволяет учитывать относительные зависимости и взаимосвязи между исходными данными.

Нейросети в трейдинге: Агент с многоуровневой памятью (Окончание)
Продолжаем начатую работу по созданию фреймворка FinMem, который использует подходы многоуровневой памяти, имитирующие когнитивные процессы человека. Это позволяет модели не только эффективно обрабатывать сложные финансовые данные, но и адаптироваться к новым сигналам, значительно повышая точность и результативность инвестиционных решений в условиях динамично изменяющихся рынков.

Нейросети — это просто (Часть 82): Модели Обыкновенных Дифференциальных Уравнений (NeuralODE)
В данной статье я предлагаю познакомиться Вас с еще одним типом моделей, которые направлены на изучение динамики состояния окружающей среды.

Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть II): Многомодальность
Во второй части статьи перейдем к практической реализации алгоритма BSO, проведем тесты на тестовых функциях и сравним эффективность BSO с другими методами оптимизации.

Разрабатываем мультивалютный советник (Часть 8): Проводим нагрузочное тестирование и обрабатываем новый бар
По мере продвижения мы использовали в одном советнике всё больше и больше одновременно работающих экземпляров торговых стратегий. Попробуем выяснить до какого количества экземпляров мы можем дойти прежде, чем столкнёмся ограничениями ресурсов.

Разрабатываем мультивалютный советник (Часть 14): Адаптивное изменение объёмов в риск-менеджере
Разработанный ранее риск-менеджер содержал только базовую функциональность. Попробуем рассмотреть возможные пути его развития, позволяющие повысить торговые результаты без вмешательства в логику торговых стратегий.

Разработка советника на основе стратегии прорыва диапазона консолидации на MQL5
В статье описываются шаги по созданию торгового советника, который извлекает выгоду из ценовых прорывов после периодов консолидации. Определяя диапазоны консолидации и устанавливая уровни прорыва, трейдеры могут автоматизировать свои торговые решения на основе этой стратегии. Советник призван обеспечить четкие точки входа и выхода, избегая ложных пробоев.