MQL5 Trading Toolkit (Parte 7): Expandindo a Biblioteca EX5 de Gerenciamento de Histórico com as Funções da Última Ordem Pendente Cancelada
Aprenda como concluir a criação do módulo final na biblioteca History Manager EX5, com foco nas funções responsáveis por lidar com a ordem pendente cancelada mais recente. Isso fornecerá a você as ferramentas para recuperar e armazenar de forma eficiente os principais detalhes relacionados às ordens pendentes canceladas com MQL5.
Implementação do mecanismo de breakeven em MQL5 (Parte 1): Classe base e modo de breakeven por pontos fixos
Neste artigo, analisamos a aplicação do mecanismo de breakeven (ponto de equilíbrio) em estratégias automatizadas na linguagem MQL5. Começaremos com uma explicação simples do que é o modo de breakeven, como ele é implementado e quais são suas possíveis variações. Em seguida, essa funcionalidade será integrada ao EA Order Blocks, criado por nós no último artigo sobre gerenciamento de riscos. Para avaliar a eficácia, faremos dois backtests sob determinadas condições: um com a aplicação do mecanismo de breakeven e outro, sem.
Simulação de mercado: A união faz a força (III)
Neste artigo, apresentarei o nosso sistema de simulação de operações a mercado. Apesar deste sistema está praticamente terminado. Ainda existem algumas coisas a serem feitas e implementadas. Além de algumas poucas mudanças que ainda precisam ser feitas. Mas mesmo com tudo que já foi implementado. Confesso que já estou cansado de ficar preso na implementação deste sistema.
Do básico ao intermediário: Sobrecarga de operadores (IV)
Neste artigo faremos uma primeira abordagem a fim de trabalhar e demonstrar como podemos implementar a sobrecarga do operador subscrito e também do operador de atribuição. Tentando com isto trazer uma abordagem prática e que fosse interessante para todos. Porém o que será visto aqui, é apenas uma parte daquilo que pretendo ainda mostrar e que está diretamente ligado a sobrecarga de tais operadores.
Algoritmo de otimização caótica — Chaos optimization algorithm (COA): Continuação
Continuação do estudo do algoritmo de otimização caótica. A segunda parte do artigo é dedicada aos aspectos práticos da implementação do algoritmo, ao seu teste e às conclusões.
Trading de arbitragem no Forex: sistema de negociação matricial para retorno ao valor justo com limitação de risco
O artigo contém uma descrição detalhada do algoritmo de cálculo de taxas cruzadas, a visualização da matriz de desequilíbrios e recomendações para a configuração ideal dos parâmetros MinDiscrepancy e MaxRisk para uma negociação eficiente. O sistema calcula automaticamente o "valor justo" de cada par de moedas por meio de taxas cruzadas, gerando sinais de compra em desvios negativos e de venda em desvios positivos.
Desenvolvimento do Toolkit de Análise de Price Action (Parte 8): Painel de Métricas
Como um dos mais poderosos toolkits de análise de Price Action, o Painel de Métricas foi projetado para otimizar a análise de mercado, fornecendo instantaneamente métricas essenciais do mercado com apenas um clique de botão. Cada botão exerce uma função específica, seja para analisar tendências de máxima/mínima, volume ou outros indicadores-chave. Esta ferramenta entrega dados precisos e em tempo real exatamente quando você mais precisa. Vamos explorar mais profundamente seus recursos neste artigo.
Introdução ao MQL5 (Parte 11): Um guia para iniciantes sobre como trabalhar com indicadores incorporados no MQL5 (II)
Descubra como desenvolver um Expert Advisor (EA) em MQL5 usando múltiplos indicadores como RSI, MA e Oscilador Estocástico para detectar divergências ocultas de alta e de baixa. Aprenda a implementar um gerenciamento de risco eficaz e a automatizar negociações com exemplos detalhados e código-fonte totalmente comentado para fins educacionais!
Visão computacional para trading (Parte 1): Criando uma funcionalidade básica simples
Sistema de previsão do EURUSD usando visão computacional e aprendizado profundo. Descubra como redes neurais convolucionais podem reconhecer padrões complexos de preços no mercado cambial e prever o movimento da cotação com precisão de até 54%. O artigo revela a metodologia de criação de um algoritmo que utiliza tecnologias de inteligência artificial para análise visual de gráficos, em vez de indicadores técnicos tradicionais. O autor demonstra o processo de transformação dos dados de preços em "imagens", seu processamento por uma rede neural e a oportunidade única de olhar para a "consciência" da IA por meio de mapas de ativação e mapas de calor de atenção. O código prático em Python, com a utilização da biblioteca MetaTrader 5, possibilita que os leitores reproduzam o sistema e o apliquem em seu próprio trading.
Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multidimensionais (Conclusão)
Continuamos a implementação do framework DA-CG-LSTM, que propõe métodos inovadores de análise e previsão de séries temporais. O uso de CG-LSTM e do mecanismo de atenção dupla permite identificar com maior precisão tanto dependências de longo prazo quanto de curto prazo nos dados, o que é especialmente útil para o trabalho com mercados financeiros.
Integração de APIs de Corretoras com Expert Advisors usando MQL5 e Python
Neste artigo, discutiremos a implementação do MQL5 em parceria com o Python para realizar operações relacionadas à corretora. Imagine ter um Expert Advisor (EA) em execução contínua hospedado em um VPS, executando negociações em seu nome. Em determinado momento, a capacidade do EA de gerenciar fundos torna-se fundamental. Isso inclui operações como adicionar fundos à sua conta de negociação e iniciar retiradas. Nesta discussão, iremos esclarecer as vantagens e a implementação prática desses recursos, garantindo a integração perfeita do gerenciamento de fundos à sua estratégia de negociação. Fique atento!
Algoritmo de otimização caótica — Chaos optimization algorithm (COA)
Algoritmo de otimização caótica (COA) aprimorado, que combina a influência do caos com mecanismos adaptativos de busca. O algoritmo utiliza diversos mapeamentos caóticos e componentes inerciais para explorar o espaço de busca. O artigo revela os fundamentos teóricos dos métodos caóticos de otimização financeira.
Redes neurais em trading: Otimização de LSTM para fins de previsão de séries temporais multivariadas (DA-CG-LSTM)
Este artigo apresenta o algoritmo DA-CG-LSTM, que propõe novas abordagens para análise e previsão de séries temporais. Você verá como mecanismos de atenção inovadores e a flexibilidade da arquitetura contribuem para o aumento da precisão das previsões.
Desenvolvendo um EA multimoeda (Parte 26): Informador para instrumentos de negociação
Antes de avançarmos ainda mais no desenvolvimento de EAs multimoeda, vamos tentar mudar o foco para a criação de um novo projeto que utilize a biblioteca já desenvolvida. Com esse exemplo, identificaremos como é melhor organizar o armazenamento do código-fonte e como o novo repositório de código da MetaQuotes pode nos ajudar.
Simulação de mercado: A união faz a força (II)
Até o momento, a aplicação que estava sendo desenvolvida nesta sequência de artigos. Visava apenas e tão somente simular a parte gráfica. Mas para um sistema mais completo, onde temos a possibilidade de experimentar um Expert Advisor dentro do serviço de replay/simulador. Precisamos também fazer a simulação do servidor de negociação. Você notará, que a simulação usará o mínimo do mínimo possível. Mas se você, meu caro leitor, desejar, poderá completar as partes que faltam. Mas como isto não fará diferença para o que estou disposto a mostrar. Já temos mais do que o suficiente para desenvolver o que foi planejado.
Do básico ao intermediário: Sobrecarga de operadores (III)
Neste artigo será demonstrado como podemos implementar a sobrecarga tanto de operadores lógicos como também de operadores relacionais. Fazer isto demanda um certo cuidado e uma boa dose de atenção. Já que um simples deslize durante a implementação do que será a sobrecarga de tais operadores, pode vir a pôr todo um código em condição de ser totalmente jogado no lixo. Já que se a sobrecarga vier a ter problemas. Toda uma base de dados criada em cima dos resultados gerados pelo seu código deverá ser completamente descartada, ou no mínimo totalmente revisada.
Previsão de barras Renko com a ajuda de IA CatBoost
Como usar barras Renko junto com IA? Vamos analisar o Renko-trading no Forex com precisão de previsões de até 59.27%. Exploraremos as vantagens das barras Renko para filtrar o ruído do mercado, entenderemos por que indicadores de volume são mais importantes do que padrões de preço e como configurar o tamanho ideal do bloco Renko para EURUSD. Um guia passo a passo para integrar CatBoost, Python e MetaTrader 5 para criar seu próprio sistema de previsão Renko Forex. Perfeito para traders que desejam ir além da análise técnica tradicional.
Análise espectral singular unidimensional
O artigo aborda os aspectos teóricos e práticos do método de análise espectral singular (SSA), que constitui um método eficaz de análise de séries temporais e permite representar a estrutura complexa da série como uma decomposição em componentes simples, tais como tendência, oscilações sazonais (periódicas) e ruído.
Desenvolvendo um Expert Advisor de Breakout Baseado em Eventos de Notícias do Calendário em MQL5
A volatilidade tende a atingir picos em torno de eventos de notícias de alto impacto, criando oportunidades significativas de breakout. Neste artigo, iremos delinear o processo de implementação de uma estratégia de breakout baseada em calendário. Abordaremos tudo, desde a criação de uma classe para interpretar e armazenar dados do calendário, o desenvolvimento de backtests realistas utilizando esses dados e, por fim, a implementação do código de execução para negociação ao vivo.
Trading por pares: negociação algorítmica com auto-otimização baseada na diferença de pontuação Z
Neste artigo, analisaremos o que é o trading por pares e como ocorre a negociação baseada em correlações. Também criaremos um EA para automatizar o trading por pares e adicionaremos a possibilidade de otimização automática desse algoritmo de negociação com base em dados históricos. Além disso, dentro do projeto, aprenderemos a calcular as divergências entre dois pares por meio da pontuação Z.
Redes neurais em trading: Ator–Diretor–Crítico (Conclusão)
O framework Actor–Director–Critic representa uma evolução da arquitetura clássica de aprendizado por agentes. O artigo apresenta uma experiência prática de sua implementação e adaptação às condições dos mercados financeiros.
Critérios de tendência. Conclusão
Neste artigo, analisaremos as particularidades da aplicação prática de alguns critérios de tendência. Além disso, tentaremos desenvolver alguns novos critérios. A principal atenção será dada à eficácia desses critérios na análise de dados de mercado e no trading.
Redes neurais em trading: Detecção de anomalias no domínio da frequência (Conclusão)
Damos continuidade ao trabalho de implementação das abordagens do framework CATCH, que combina a transformada de Fourier e o mecanismo de patching em frequência, possibilitando a detecção precisa de anomalias de mercado. Nesta etapa, concluímos a realização da nossa própria versão das abordagens propostas e conduziremos testes com os novos modelos utilizando dados históricos reais.
Gerenciamento de riscos (Parte 5): Integração do sistema de gerenciamento de riscos ao EA
Neste artigo, implementaremos o sistema de gerenciamento de risco desenvolvido em publicações anteriores e adicionaremos o indicador Order Blocks apresentado em outros artigos. Além disso, será realizado um backtest para comparar os resultados com a aplicação do sistema de gerenciamento de risco e para avaliar o impacto do risco dinâmico.
Reimaginando Estratégias Clássicas (Parte 13): Minimizando o Atraso em Cruzamentos de Médias Móveis
Os cruzamentos de médias móveis são amplamente conhecidos pelos traders em nossa comunidade, e ainda assim o núcleo da estratégia mudou muito pouco desde sua criação. Nesta discussão, apresentaremos um leve ajuste à estratégia original, que busca minimizar o atraso presente na estratégia de negociação. Todos os fãs da estratégia original podem considerar revisar a estratégia de acordo com os insights que discutiremos hoje. Ao usar 2 médias móveis com o mesmo período, reduzimos consideravelmente o atraso na estratégia de negociação, sem violar os princípios fundamentais da estratégia.
Desenvolvimento de um sistema de monitoramento de entradas de swing (EA)
À medida que o ano se aproxima do fim, traders de longo prazo costumam refletir sobre o histórico do mercado para analisar seu comportamento e tendências, visando projetar potenciais movimentos futuros. Neste artigo, exploraremos o desenvolvimento de um Expert Advisor (EA) de monitoramento de entradas de longo prazo usando MQL5. O objetivo é abordar o desafio das oportunidades de negociação de longo prazo perdidas devido ao trading manual e à ausência de sistemas automatizados de monitoramento. Usaremos um dos pares mais negociados como exemplo para estruturar e desenvolver nossa solução de forma eficaz.
Automatização de estratégias de trading com MQL5 (Parte 13): Criação de um algoritmo de negociação para o padrão "Cabeça e Ombros"
Neste artigo, automatizaremos o padrão "Cabeça e Ombros" em MQL5. Analisaremos sua arquitetura, implementaremos um EA para sua detecção e negociação, e testaremos os resultados no histórico. Esse processo revela um algoritmo de negociação prático, que pode ser aprimorado.
Gerenciamento de riscos (Parte 4): Conclusão dos métodos-chave da classe
Este artigo é a quarta parte da nossa série sobre gerenciamento de riscos em MQL5, onde continuamos a explorar métodos avançados de proteção e otimização de estratégias de negociação. Após termos estabelecido as bases importantes nas partes anteriores, agora focaremos em finalizar todos os métodos que ficaram pendentes na terceira parte, incluindo as funções responsáveis por verificar o atingimento de determinados níveis de lucro ou prejuízo. Além disso, o artigo introduz novos eventos-chave que garantem um controle mais preciso e flexível.
Automatizando Estratégias de Negociação em MQL5 (Parte 3): O Sistema Zone Recovery RSI para Gestão Dinâmica de Operações
Neste artigo, criamos um Sistema EA Zone Recovery RSI em MQL5, utilizando sinais de RSI para acionar operações e uma estratégia de recuperação para gerenciar perdas. Implementamos uma classe "ZoneRecovery" para automatizar as entradas de operações, a lógica de recuperação e o gerenciamento de posições. O artigo conclui com insights de backtesting para otimizar a performance e aprimorar a eficácia do EA.
Gerenciamento de riscos (Parte 3): Criação da classe principal de gerenciamento de riscos
Neste artigo começaremos a criação da classe principal de gerenciamento de riscos, que será o elemento chave para o controle de riscos no sistema. Vamos nos concentrar na construção das bases, na definição das principais estruturas, variáveis e funções. Além disso, implementaremos os métodos necessários para atribuir valores de lucro máximo e prejuízo máximo, estabelecendo assim o alicerce do gerenciamento de riscos.
Simulação de mercado: A união faz a força (I)
Estamos chegando aos finalmente. O desenvolvimento do replay / simulador está quase concluído. É bem verdade que ainda precisaremos fazer algumas poucas coisas. Mas frente a tudo que realmente já foi feito. Implementar o que falta será moleza. Mas como tudo que será mostrado neste artigo, precisará ser adequadamente digerido e compreendido. Quero que você, meu caro leitor e entusiasta.
Do básico ao intermediário: Sobrecarga de operadores (II)
Este será um artigo que a principio irá parecer bem confuso devido ao que será mostrado nele. Porém tentei deixar as coisas o mais simples e didáticas quanto foi possível ser feito. Espero que você consiga compreender o que estará sendo demonstrando neste artigo. E que isto venha a lhe ser útil em algum momento.
Gerenciamento de riscos (Parte 2): Implementação do cálculo de lotes na interface gráfica
Neste artigo, analisaremos como aprimorar e aplicar de forma mais eficiente os conceitos apresentados no artigo anterior, utilizando as poderosas bibliotecas de elementos gráficos de controle do MQL5. Conduzirei você passo a passo pelo processo de criação de uma interface gráfica totalmente funcional, explicando o plano de projeto subjacente, bem como o propósito e o princípio de funcionamento de cada método empregado. Além disso, ao final do artigo testaremos o painel criado, a fim de confirmar seu correto funcionamento e sua aderência aos objetivos estabelecidos.
Desenvolvimento de um Kit de Ferramentas para Análise da Ação do Preço (Parte 6): Mean Reversion Signal Reaper
Embora alguns conceitos possam parecer simples à primeira vista, trazê-los à prática pode ser bastante desafiador. No artigo abaixo, levaremos você a uma jornada pela nossa abordagem inovadora para automatizar um Expert Advisor (EA) que analisa o mercado de forma eficiente utilizando uma estratégia de reversão à média. Junte-se a nós enquanto desvendamos as complexidades desse empolgante processo de automação.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 51): Aprendizado por Reforço com SAC
Soft Actor Critic é um algoritmo de Aprendizado por Reforço que utiliza 3 redes neurais. Uma rede ator e 2 redes críticas. Esses modelos de aprendizado de máquina são combinados em uma parceria mestre-escravo onde as redes críticas são modeladas para melhorar a precisão de previsão da rede ator. Ao mesmo tempo em que introduzimos ONNX nesta série, exploramos como essas ideias podem ser colocadas à prova como um sinal personalizado de um Expert Advisor montado pelo wizard.
Desenvolvimento de sistemas de trading avançados ICT: Implementação de sinais no indicador Order Blocks
Neste artigo você vai aprender como desenvolver um indicador Order Blocks baseado no volume do livro de ofertas (profundidade de mercado) e otimizá-lo usando buffers para melhorar a precisão. Com isso, concluímos a etapa atual do projeto e nos preparamos para as próximas, nas quais será implementada uma classe de gerenciamento de risco e um robô de negociação que utilizará os sinais gerados pelo indicador.
Gerenciamento de riscos (Parte 1): Fundamentos da construção de uma classe de gerenciamento de riscos
Neste artigo, analisaremos os fundamentos do gerenciamento de riscos no trading e veremos como criar nossas primeiras funções para calcular o lote adequado para uma operação, assim como o stop loss. Além disso, examinaremos em detalhes como essas funções funcionam, explicando cada etapa. Nosso objetivo é fornecer uma compreensão clara de como aplicar esses conceitos na negociação automática. No final, aplicaremos tudo na prática, criando um script simples com o arquivo incluível que desenvolveremos.
MQL5 Trading Toolkit (Parte 5): Expandindo a Biblioteca EX5 de Gerenciamento de Histórico com Funções de Posição
Descubra como criar funções exportáveis em EX5 para consultar e salvar de forma eficiente dados históricos de posições. Neste guia passo a passo, ampliaremos a biblioteca EX5 de gerenciamento de histórico desenvolvendo módulos que recuperam propriedades-chave da posição fechada mais recentemente. Isso inclui lucro líquido, duração da negociação, stop loss em pips, take profit, valores de lucro e vários outros detalhes importantes.
Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 10): Golden Cross e Death Cross Estratégicos (EA)
Você sabia que as estratégias Golden Cross e Death Cross, baseadas no cruzamento de médias móveis, são alguns dos indicadores mais confiáveis para identificar tendências de mercado de longo prazo? Um Golden Cross sinaliza uma tendência de alta quando uma média móvel mais curta cruza acima de uma média mais longa, enquanto o Death Cross indica uma tendência de baixa quando a média mais curta cruza abaixo. Apesar de sua simplicidade e eficácia, aplicar essas estratégias manualmente frequentemente leva a oportunidades perdidas ou negociações atrasadas.
Simulação de mercado: Position View (XX)
Neste artigo iremos ver como modificar o código do indicador de posição a fim de conseguir, criar um tipo de sombra para que possamos visualizar onde o preço se encontra atualmente no servidor de negociação. Tal principio tem como finalidade facilitar o planejamento de operações. Onde temos uma movimentação das linhas de stop loss ou take profit. Porém adicionar tal funcionalidade, ou seja sombras de preço. Pode parecer algo extremamente complexo. Mas neste artigo mostrarei que você conseguirá fazer isto de maneira muito simples e prática.