MQL4とMQL5のプログラム記事

icon

取引戦略をプログラミングするためのMQL5言語を、ほとんどがコミュニティメンバーによって書かれた数多くの公開記事で学びます。記事は統合、テスター、取引戦略等のカテゴリに分けられていて、プログラミングに関連する疑問への解答を素早く見つけることができます。

新着記事をフォローして、フォーラムでディスカッションしてください。

新しい記事を追加
最新 | ベスト
preview
血液型遺伝最適化(BIO)

血液型遺伝最適化(BIO)

人間の血液型の遺伝システムに着想を得た、新しい集団最適化アルゴリズム「血液型遺伝最適化(BIO)」を紹介します。このアルゴリズムでは、各解がそれぞれ固有の「血液型」を持ち、その血液型が進化の方法を決定します。自然界において子の血液型が特定の遺伝ルールに従って受け継がれるように、BIOでは新しい解が継承と突然変異の仕組みを通じて特性を獲得します。
preview
市場シミュレーション(第9回):ソケット(III)

市場シミュレーション(第9回):ソケット(III)

本日の記事は前回の記事の続編です。今回はエキスパートアドバイザー(EA)の実装を取り上げ、特にサーバー側コードがどのように実行されるかに焦点を当てます。前回の記事で示したコードだけでは、すべてを期待どおりに動作させるには不十分であるため、もう少し深く掘り下げる必要があります。そのため、これから起こることをよりよく理解するには、両方の記事を読む必要があります。
preview
初級から中級まで:イベント(I)

初級から中級まで:イベント(I)

ここまでに示された内容を踏まえると、いよいよチャート上で直接銘柄を操作するようなアプリケーションの実装を始めることができそうです。しかし、その前に、初心者にはやや混乱しやすい概念について触れておく必要があります。つまり、チャート上で表示することを目的として開発されるMQL5のアプリケーションは、これまで見てきた方法と同じようには作られないということです。本記事では、この点を少しずつ理解していきます。
preview
IBMの量子コンピュータを使ってすべての価格変動パターンを解析する

IBMの量子コンピュータを使ってすべての価格変動パターンを解析する

IBMの量子コンピュータを使用してすべての価格変動オプションを発見します。まるでSFの話のようですが、これが取引における量子コンピューティングの世界です。
preview
1世紀前の機能で取引戦略をアップデートする

1世紀前の機能で取引戦略をアップデートする

本記事では、ラーデマッヘル関数およびウォルシュ関数を取り上げます。これらの関数を金融時系列解析にどのように適用できるかを検討し、さらに取引におけるさまざまな応用例についても考察します。
preview
取引におけるニューラルネットワーク:2次元接続空間モデル(最終回)

取引におけるニューラルネットワーク:2次元接続空間モデル(最終回)

革新的なChimeraフレームワークの探求を続けます。このフレームワークは、ニューラルネットワーク技術を用いて多次元時系列を解析する二次元状態空間モデル(2D-SSM)です。この手法は、高い予測精度と低い計算コストを両立します。
preview
取引におけるニューラルネットワーク:2次元接続空間モデル(Chimera)

取引におけるニューラルネットワーク:2次元接続空間モデル(Chimera)

この記事では、革新的なChimeraフレームワークについて解説します。Chimeraは二次元状態空間モデルを用い、ニューラルネットワークで多変量時系列を解析する手法です。この方法は、従来手法やTransformerアーキテクチャを上回る低い計算コストで高い精度を実現します実現します。
preview
多通貨エキスパートアドバイザーの開発(第22回):設定のホットスワップへの移行を開始する

多通貨エキスパートアドバイザーの開発(第22回):設定のホットスワップへの移行を開始する

定期的な最適化を自動化するのであれば、取引口座上ですでに稼働しているEAの設定を自動更新することについても検討する必要があります。これにより、ストラテジーテスター内でエキスパートアドバイザー(EA)を実行しながら、単一の実行の中でその設定を変更できるようにする必要があります。
preview
円探索アルゴリズム(CSA)

円探索アルゴリズム(CSA)

本記事では、円の幾何学的性質に基づいた新しいメタヒューリスティック最適化アルゴリズム「円探索アルゴリズム(Circle Search Algorithm, CSA)」を紹介します。本アルゴリズムは、最適解を探索するために点を接線に沿って移動させる原理を使用し、大域探索と局所探索のフェーズを組み合わせています。
preview
外国為替におけるフィボナッチ(第1回):価格と時間の関係を調べる

外国為替におけるフィボナッチ(第1回):価格と時間の関係を調べる

市場はフィボナッチに基づく関係性をどのように観測しているのでしょうか。各項が直前の2つの項の和になっているこの数列(1, 1, 2, 3, 5, 8, 13, 21...)は、ウサギの個体数の増加を説明するだけのものではありません。私たちは、「世界のあらゆるものは数の一定の関係に従う」というピタゴラス派の仮説を考察します。
preview
市場シミュレーション(第8回):ソケット(II)

市場シミュレーション(第8回):ソケット(II)

ソケットを使って何か実用的なものを作ってみましょう。今回の記事では、ミニチャットの作成を始めます。一緒にどのようにおこなうかを見ていきましょう。とても面白い内容になるでしょう。ここで提供するコードは教育目的のみの使用を想定しています。商用目的や既製のアプリケーションでの使用には適していません。ソケット上で送信されるデータは安全に保護されず、内容が第三者からアクセス可能になる可能性があるためです。
preview
初級から中級まで:構造体(II)

初級から中級まで:構造体(II)

本記事では、MQL5のようなプログラミング言語において構造体が存在する理由を考察します。また、構造体を用いて関数や手続き間で値を受け渡すことが有効な場合と、必ずしもそうではない場合がある理由についても解説します。
preview
取引におけるニューラルネットワーク:ResNeXtモデルに基づくマルチタスク学習(最終回)

取引におけるニューラルネットワーク:ResNeXtモデルに基づくマルチタスク学習(最終回)

ResNeXtに基づくマルチタスク学習フレームワークの探求を続けます。このフレームワークは、モジュール性が高く、計算効率に優れ、データ中の安定したパターンを特定できることが特徴です。単一のエンコーダーと専門化された「ヘッド」を使用することで、モデルの過学習のリスクを減らし、予測の精度を向上させます。
preview
取引におけるニューラルネットワーク:ResNeXtモデルに基づくマルチタスク学習

取引におけるニューラルネットワーク:ResNeXtモデルに基づくマルチタスク学習

ResNeXtに基づくマルチタスク学習フレームワークは、金融データの高次元性、非線形性、時間依存性を考慮しながら分析を最適化します。グループ畳み込みと専用ヘッドの使用により、モデルは入力データから重要な特徴を効果的に抽出することができます。
preview
初級から中級まで:構造体(I)

初級から中級まで:構造体(I)

本日は、構造体について、よりシンプルで実践的、かつ無理のない形で学び始めます。構造体は、構造化プログラミングであろうとなかろうと、プログラミングの基礎を成す要素のひとつです。多くの人は、構造体を単なるデータの集合だと考えがちですが、実際にはそれ以上の役割を持っています。本記事では、この新しい世界を、できるだけ分かりやすく、体系的に探っていきます。
preview
市場シミュレーション(第7回):ソケット(I)

市場シミュレーション(第7回):ソケット(I)

ソケットについてご存じでしょうか。また、MetaTrader 5でどのように使用するかをご存じでしょうか。もし答えが「いいえ」であれば、ここから一緒に学んでいきましょう。本日の記事では、その基礎について解説します。同じことを実現する方法はいくつも存在しますが、私たちが常に重視するのは結果です。そこで、MetaTrader 5からExcelのような他のプログラムへデータを転送するための、実際にシンプルな方法が存在することを示したいと思います。ただし、本来の主な目的は、MetaTrader 5からExcelへデータを送ることではなく、その逆、つまりExcelやその他のプログラムからMetaTrader 5へデータを転送することにあります。
preview
ロイヤルフラッシュ最適化(RFO)

ロイヤルフラッシュ最適化(RFO)

オリジナルの「ロイヤルフラッシュ最適化」アルゴリズムは、最適化問題を解決するための新しいアプローチを提示しています。この手法では、遺伝的アルゴリズムで一般的に用いられる古典的な二進符号化を、ポーカーの原理に着想を得たセクターベースのアプローチに置き換えています。RFOは、基本原理を単純化することで、効率的かつ実用的な最適化手法が実現できることを示しています。本記事では、アルゴリズムの詳細な解析とテスト結果を紹介します。
preview
取引におけるニューラルネットワーク:階層型ダブルタワーTransformer(最終回)

取引におけるニューラルネットワーク:階層型ダブルタワーTransformer(最終回)

複雑な多変量時系列の分析および予測を目的に設計された、Hidformer階層型ダブルタワーTransformerモデルの構築を引き続き進めます。本記事では、これまでに着手した作業を論理的な結論へと導き、実際の履歴データを用いてモデルを検証します。
preview
弁証法的探索(DA)

弁証法的探索(DA)

本記事では、弁証法の考え方に着想を得た大域最適化手法である弁証法的アルゴリズム(Dialectical Algorithm, DA)を紹介します。このアルゴリズムは、集団を「思索的思考者(speculative thinkers)」と「実践的思考者(practical thinkers)」に独自に分割する点が特徴です。テストでは、低次元問題において最大98%の高い性能を示し、全体的な効率は57.95%に達しました。本記事ではこれらの指標を解説し、アルゴリズムの詳細な説明とさまざまな関数に対する実験結果を提示します。
preview
金融時系列予測のための生物学的ニューロン

金融時系列予測のための生物学的ニューロン

時系列予測のために生物学的に正しいニューロンシステムを構築します。ニューラルネットワークのアーキテクチャにプラズマ的な環境を導入することで、一種の「集合知」が生まれます。そこでは、各ニューロンが直接的な結合だけでなく、長距離の電磁相互作用を通じてもシステム全体の動作に影響を与えます。このようなニューラル脳モデリングシステムが市場においてどのような性能を発揮するのかを見ていきます。
preview
取引におけるニューラルネットワーク:階層型ダブルタワーTransformer (Hidformer)

取引におけるニューラルネットワーク:階層型ダブルタワーTransformer (Hidformer)

階層型ダブルタワーTransformer (Hidformer: Hierarchical Double-Tower Transformer)フレームワークについて紹介します。このフレームワークは時系列予測およびデータ分析向けに開発されました。Hidformerの開発者は、Transformerアーキテクチャに対して複数の改良を提案しており、その結果、予測精度の向上と計算リソースの削減を実現しています。
preview
Pythonを使用したボラティリティ予測インジケーターの作成

Pythonを使用したボラティリティ予測インジケーターの作成

本記事では、二値分類を使って将来の極端なボラティリティを予測します。さらに、機械学習を活用した極端ボラティリティ予測インジケーターの開発もおこないます。
preview
市場シミュレーション(第6回):MetaTrader 5からExcelへの情報の転送

市場シミュレーション(第6回):MetaTrader 5からExcelへの情報の転送

多くの人、特にプログラマーではない人は、MetaTrader 5と他のプログラムとの間で情報をやり取りすることは非常に難しいと感じます。その代表的な例がExcelです。多くの人がExcelをリスク管理や運用管理のための手段として利用しています。Excelは非常に優れたプログラムであり、VBAプログラマーでなくても比較的容易に習得できます。ここでは、MetaTrader 5とExcelの間に接続を確立する方法について説明します。方法は非常にシンプルなものです。
preview
リスク管理(第2回):グラフィカルインターフェースでのロット計算の実装

リスク管理(第2回):グラフィカルインターフェースでのロット計算の実装

本記事では、前回の記事で紹介した内容をさらに発展させ、MQL5の強力なグラフィカルコントロールライブラリを使って実際にGUIを作成する方法を解説します。ステップごとに、完全に動作するGUIを作る過程を追いながら、各メソッドの仕組みや役割、そしてその背後にある考え方についても丁寧に説明します。また、記事の最後には、作成したパネルをテストして、正しく機能することを確認します。
preview
市場シミュレーション(第5回):C_Ordersクラスの作成(II)

市場シミュレーション(第5回):C_Ordersクラスの作成(II)

本記事では、Chart Tradeとエキスパートアドバイザー(EA)が連携して、ユーザーが保有しているすべてのポジションを決済する要求をどのように処理するのかを解説します。一見すると単純な処理に思えるかもしれませんが、実際には注意すべきいくつかの複雑な点があります。
preview
初級から中級まで:テンプレートとtypename(V)

初級から中級まで:テンプレートとtypename(V)

本記事では、テンプレートの最後の簡単な使用例を探り、コード内でtypenameを使用する利点と必要性についても解説します。最初は少し難しく感じるかもしれませんが、テンプレートやtypenameを後で正しく使うためには、しっかり理解しておくことが重要です。
preview
取引におけるニューラルネットワーク:暗号通貨市場向けメモリ拡張コンテキスト認識学習(最終回)

取引におけるニューラルネットワーク:暗号通貨市場向けメモリ拡張コンテキスト認識学習(最終回)

MacroHFTフレームワークは、高頻度暗号資産取引(HFT)のために、文脈認識型強化学習とメモリ機構を用いて動的な市場環境に適応します。本記事の最後では、実装した手法を実際の過去データで検証し、その有効性を評価します。
preview
取引におけるニューラルネットワーク:暗号通貨市場向けメモリ拡張コンテキスト認識学習(MacroHFT)

取引におけるニューラルネットワーク:暗号通貨市場向けメモリ拡張コンテキスト認識学習(MacroHFT)

MacroHFTフレームワークは、マクロ経済データと適応型エージェントを用いて、高頻度暗号資産取引の意思決定を改善するために、コンテキスト認識型強化学習とメモリを応用するものです。
preview
市場シミュレーション(第4回):C_Ordersクラスの作成(I)

市場シミュレーション(第4回):C_Ordersクラスの作成(I)

本記事では、取引サーバーに注文を送信できるようにするためのC_Ordersクラスの作成を開始します。これは少しずつ進めていきますが、目的は、メッセージングシステムを通じてこれがどのようにおこなわれるのかを詳細に説明することです。
preview
取引におけるニューラルネットワーク:概念強化を備えたマルチエージェントシステム(最終回)

取引におけるニューラルネットワーク:概念強化を備えたマルチエージェントシステム(最終回)

FinConフレームワークの著者によって提案されたアプローチの実装を続けます。FinConは、大規模言語モデル(LLM)をベースとしたマルチエージェントシステムです。本日は、必要なモジュールを実装し、実際の過去データを用いたモデルの包括的なテストをおこないます。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第16回):教師あり学習を用いた線形システム同定

MQL5で自己最適化エキスパートアドバイザーを構築する(第16回):教師あり学習を用いた線形システム同定

線形システム同定は、教師あり学習アルゴリズムにおける誤差補正の学習と組み合わせることができます。これにより、統計的モデリング手法に依存したアプリケーションを構築しつつも、モデルが前提とする厳格な仮定の脆弱性を必ずしも引き継ぐことなく設計することが可能になります。従来の教師あり学習アルゴリズムには多くの要件がありますが、それらはフィードバックコントローラーと組み合わせることで補完でき、モデルを補正しながら現在の市場環境に適応させることができます。
preview
取引におけるニューラルネットワーク:概念強化を備えたマルチエージェントシステム(FinCon)

取引におけるニューラルネットワーク:概念強化を備えたマルチエージェントシステム(FinCon)

FinConフレームワークは、大規模言語モデル(LLM)をベースにしたマルチエージェントシステムです。概念的言語強化を活用して意思決定とリスク管理を改善し、さまざまな金融タスクで効果的に機能するよう設計されています。
preview
初心者からエキスパートへ:パラメータ制御ユーティリティ

初心者からエキスパートへ:パラメータ制御ユーティリティ

従来のEAやインジケーターの入力プロパティを、リアルタイムで操作可能なオンチャートのコントロールインターフェースへと変換することを想像してみてください。本記事は、これまでに取り組んできたMarket Periods Synchronizerインジケーターでの基礎的な成果を土台とし、上位足(HTF)の市場構造を可視化し、管理する手法を大きく進化させるものです。ここでは、その概念を完全にインタラクティブなユーティリティへと昇華させ、動的な操作性と強化されたマルチタイムフレーム(MTF)のプライスアクションの可視化を、チャート上に直接統合したダッシュボードとして実装します。この革新的なアプローチが、トレーダーとツールの関わり方をどのように変えていくのか、一緒に見ていきましょう。
preview
リスク管理(第1回):リスク管理クラス構築の基礎

リスク管理(第1回):リスク管理クラス構築の基礎

本記事では、取引におけるリスク管理の基礎を解説し、適切なロットサイズやストップロスを計算するための最初の関数の作成方法を学びます。さらに、これらの機能がどのように動作するのかを、各ステップを追いながら詳しく説明します。本記事の目的は、自動売買においてこれらの概念をどのように適用するかを明確に理解することです。最後に、インクルードファイルを使用したシンプルなスクリプトを作成し、すべてを実践に落とし込みます。
preview
取引におけるニューラルネットワーク:金融市場向けマルチモーダルツール拡張エージェント(FinAgent)

取引におけるニューラルネットワーク:金融市場向けマルチモーダルツール拡張エージェント(FinAgent)

FinAgentを紹介します。FinAgentは、マーケットの動向や過去の取引パターンを反映するさまざまなタイプのデータを分析できるマルチモーダル金融取引エージェントのフレームワークです。
preview
取引におけるニューラルネットワーク:金融市場向けマルチモーダルツール拡張エージェント(最終部)

取引におけるニューラルネットワーク:金融市場向けマルチモーダルツール拡張エージェント(最終部)

マルチモーダル市場の動向データと過去の取引パターンを分析するために設計されたマルチモーダル金融取引エージェント「FinAgent」のアルゴリズム開発を続けます。
preview
多通貨エキスパートアドバイザーの開発(第21回):重要な実験の準備とコードの最適化

多通貨エキスパートアドバイザーの開発(第21回):重要な実験の準備とコードの最適化

さらなる前進のためには、自動最適化を定期的に再実行し、新しいエキスパートアドバイザー(EA)を生成することで結果を改善できるかどうかを検証することが有益でしょう。パラメータ最適化の利用を巡る多くの議論における最大の障害は、取得したパラメータを将来の期間において、収益性およびドローダウンを所定の水準に保ったまま、どれだけ長く取引に使用できるのかという点です。そして、そもそもそれは可能なのかという問題でもあります。
preview
取引におけるニューラルネットワーク:層状メモリを持つエージェント(最終回)

取引におけるニューラルネットワーク:層状メモリを持つエージェント(最終回)

引き続き、FinMemフレームワークの構築に取り組みます。本フレームワークは、人間の認知プロセスを模した層状メモリアプローチを用いることで、複雑な金融データを効果的に処理できるだけでなく、新しいシグナルに適応することも可能にします。その結果、動的に変化する市場における投資判断の精度と有効性が大幅に向上します。
preview
共和分株式による統計的裁定取引(第6回):スコアリングシステム

共和分株式による統計的裁定取引(第6回):スコアリングシステム

本記事では、共和分株式の統計的裁定取引に基づく平均回帰戦略のスコアリングシステムを提案します。流動性や取引コストから、共和分ベクトルの数(ランク)や回帰までの時間に至るまでの基準を示しつつ、時間足やルックバック期間のような戦略的基準も考慮し、スコアランキングを正しく評価する前に検討しています。バックテストの再現に必要なファイルも提供され、その結果についてもコメントしています。
preview
プライスアクション分析ツールキットの開発(第47回):MetaTrader 5で外国為替セッションとブレイクアウトを追跡する

プライスアクション分析ツールキットの開発(第47回):MetaTrader 5で外国為替セッションとブレイクアウトを追跡する

世界中の市場セッションは1日の取引のリズムを形成しており、それらの重なりを理解することは、エントリーやエグジットのタイミングを見極めるうえで非常に重要です。本記事では、これらの世界的な取引時間をチャート上で視覚的に再現するインタラクティブな取引セッションEAを構築します。このEAは、アジア、東京、ロンドン、ニューヨークの各セッションを色分けされた矩形として自動的に描画し、各市場の開始と終了に応じてリアルタイムで更新します。また、チャート上のトグルボタン、動的な情報パネル、そしてライブのステータスやブレイクアウトメッセージを表示するスクロール式のティッカーヘッドラインも搭載しています。複数のブローカーでテストされたこのEAは、精度とデザイン性を兼ね備えており、ボラティリティの移行を視覚的に把握し、セッション間のブレイクアウトを特定し、グローバル市場の動きを常に意識したトレードを可能にします。