Artigos sobre programação nas linguagens MQL4 e MQL5

icon

Leia os artigos publicados aqui para aprender MQL5, a linguagem das estratégias de negociação. A maioria desses artigos foi escrita por vocês, membros da MQL5.community. Todos eles estão divididos em categorias para encontrar respostas rápidas relacionadas a aspectos específicos da programação: "Integração", "Testador", "Estratégias de negociação" e muito mais.

Acompanhe as novas publicações e participe de suas discussões no Fórum!

Novo artigo
recentes | melhores
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 22): FOREX (III)

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 22): FOREX (III)

Para quem ainda não entendeu a diferença entre o mercado de bolsa e o de forex, apesar de este já ser o terceiro artigo em que estou abordando isto. Devo deixar claro, que a grande diferença, é o fato de que no forex não existe, ou melhor, não nos é informado algumas coisas a respeito do que aconteceu de fato na negociação.
preview
DoEasy. Controles (Parte 7): Controle "Rótulo"

DoEasy. Controles (Parte 7): Controle "Rótulo"

Neste artigo, criaremos a classe do objeto de controle WinForms "Rótulo". Tal objeto poderá ser posicionado em qualquer lugar de seu contêiner, e sua respectiva funcionalidade replicará parte da funcionalidade do rótulo de texto do MS Visual Studio, para que possamos definir parâmetros de fonte para o texto exibido.
preview
Redes neurais de maneira fácil (Parte 28): algoritmo de gradiente de política

Redes neurais de maneira fácil (Parte 28): algoritmo de gradiente de política

Continuamos a estudar métodos de aprendizado por reforço. No artigo anterior, nos iniciamos no método de aprendizado Q profundo. Com ele, treinamos um modelo para prever a recompensa imediata dependendo da ação tomada por nós em uma determinada situação. E, em seguida, realizamos uma ação de acordo com nossa política e a recompensa esperada. Mas nem sempre é possível aproximar a função Q ou nem sempre sua aproximação dá o resultado desejado. Nesses casos, os métodos de aproximação são usados não para funções de utilidade, mas, sim, para uma política (estratégia) direta de ações. E é precisamente a esses métodos que o gradiente de política pertence.
preview
Alan Andrews e suas técnicas de análise de séries temporais

Alan Andrews e suas técnicas de análise de séries temporais

Alan Andrews é um dos mais renomados "educadores" do mundo do trading atual, no campo da análise de mercado. Suas "forquilhas" estão presentes em praticamente todos os programas modernos de análise de cotações. No entanto, a maioria dos traders utiliza apenas uma pequena fração das possibilidades oferecidas por essa ferramenta. O curso original de Andrews abrange não apenas a descrição das forquilhas (embora sejam o aspecto principal), mas também outras diretrizes úteis. Este artigo apresenta uma visão dessas incríveis técnicas de análise de gráficos que Andrews ensinou em seu curso original. Atenção: muitas imagens serão utilizadas.
preview
Experimentos com redes neurais (Parte 4): Padrões

Experimentos com redes neurais (Parte 4): Padrões

As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.
preview
Gerenciador de risco para operar manualmente

Gerenciador de risco para operar manualmente

Neste artigo, falaremos em detalhes sobre como escrever uma classe gerenciadora de risco para negociar manualmente a partir do zero. Essa classe também poderá servir como base para os traders que operam usando programação.
preview
Padrões de projeto no MQL5 (Parte 2): Padrões estruturais

Padrões de projeto no MQL5 (Parte 2): Padrões estruturais

Neste artigo, continuaremos a estudar os padrões de projeto que permitem aos desenvolvedores criar aplicativos expansíveis e confiáveis não apenas no MQL5, mas também em outras linguagens de programação. Desta vez, falaremos sobre outro tipo: modelos estruturais. Aprenderemos a projetar sistemas usando as classes disponíveis para formar estruturas maiores.
preview
Teoria das Categorias em MQL5 (Parte 3)

Teoria das Categorias em MQL5 (Parte 3)

A Teoria das Categorias representa um segmento diversificado e em constante expansão da matemática, que até agora está relativamente pouco explorado na comunidade MQL5. Esta sequência de artigos visa elucidar algumas das suas concepções com o intuito de constituir uma biblioteca aberta e potencializar ainda mais o uso deste notável setor na elaboração de estratégias de negociação.
preview
Algoritmos de otimização populacionais: Algoritmo do macaco (MA)

Algoritmos de otimização populacionais: Algoritmo do macaco (MA)

Neste artigo, estaremos analisando o algoritmo do macaco (Monkey Algorithm, MA). A habilidade destes animais ágeis para superar obstáculos complexos e atingir as partes mais inacessíveis das árvores foi a inspiração para a concepção do MA.
Gráficos na biblioteca DoEasy (Parte 91): eventos de objetos gráficos padrão no programa Histórico de alterações de nome do objeto
Gráficos na biblioteca DoEasy (Parte 91): eventos de objetos gráficos padrão no programa Histórico de alterações de nome do objeto

Gráficos na biblioteca DoEasy (Parte 91): eventos de objetos gráficos padrão no programa Histórico de alterações de nome do objeto

No artigo, modificaremos a funcionalidade básica para fornecer controle de eventos de objetos gráficos a partir de um programa baseado na biblioteca. Vamos começar criando uma funcionalidade para armazenar o histórico de alterações das propriedades dos objetos gráficos usando a propriedade "Nome do objeto" como exemplo.
preview
Desenvolvendo um sistema de Replay (Parte 33): Sistema de Ordens (II)

Desenvolvendo um sistema de Replay (Parte 33): Sistema de Ordens (II)

Vamos continuar o desenvolvimento do sistema de ordens. Mas você irá ver que iremos fazer uma reutilização massiva de coisas já vistas em outros artigos. Mesmo assim teremos um bônus neste artigo. Iremos desenvolver, primeiramente um sistema que consiga ser operado junto ao servidor de negociação real, seja usando uma conta demo, seja usando uma conta real. Vamos fazer uso massivo e extensivo da plataforma MetaTrader 5, para nos fornecer todo o suporte do qual precisaremos neste inicio de jornada
preview
Integração de Modelos Ocultos de Markov no MetaTrader 5

Integração de Modelos Ocultos de Markov no MetaTrader 5

Neste artigo, demonstramos como os Modelos Ocultos de Markov, treinados utilizando Python, podem ser integrados em aplicações MetaTrader 5. Os Modelos Ocultos de Markov são uma poderosa ferramenta estatística utilizada para modelar dados de séries temporais, onde o sistema modelado é caracterizado por estados não observáveis (ocultos). Uma premissa fundamental dos HMMs é que a probabilidade de estar em um determinado estado em um momento específico depende do estado do processo no instante anterior.
preview
Desenvolvendo um sistema de Replay (Parte 35): Ajeitando as coisas (I)

Desenvolvendo um sistema de Replay (Parte 35): Ajeitando as coisas (I)

Temos que corrigir algumas coisas antes de realmente poder continuar. Mas não se trata necessariamente de uma correção e sim de um aperfeiçoamento na forma de gerir e utilizar classe. O motivo é que existem falhas ocorrendo por conta de algum tipo de interação dentro do sistema. Apesar das tentativas de tentar compreender o motivo de algumas das falhas, para assim sana-las. Todas foram frustradas, já que não fazia o mínimo sentido de algumas delas estarem ocorrendo. Quando fazemos uso de ponteiros ou recursão em C / C++, e o programa começa a apresentar falhas.
preview
Redes neurais de maneira fácil (Parte 35): Módulo de curiosidade intrínseca

Redes neurais de maneira fácil (Parte 35): Módulo de curiosidade intrínseca

Continuamos a explorar algoritmos de aprendizado por reforço. Todos os algoritmos que analisamos até agora exigiam a criação de uma política de recompensa de tal forma que o agente pudesse avaliar cada uma de suas ações em cada transição de um estado do sistema para outro. No entanto, essa abordagem é bastante artificial. Na prática, existe um intervalo de tempo entre a ação e a recompensa. Neste artigo, proponho que você se familiarize com um algoritmo de aprendizado de modelo capaz de lidar com diferentes atrasos temporais entre a ação e a recompensa.
preview
Padrões de projeto no MQL5 (Parte 4): Padrões comportamentais 2

Padrões de projeto no MQL5 (Parte 4): Padrões comportamentais 2

Com este artigo concluímos a série sobre padrões de projeto na área de software. Já mencionei que existem três tipos de padrões de projeto: criacionais, estruturais e comportamentais. Finalizaremos os padrões comportamentais restantes, que ajudarão a definir a maneira de interação entre objetos, de modo a tornar nosso código mais limpo.
preview
Dominando a Dinâmica do Mercado: Criando um Expert Advisor (EA) para Estratégia de Suporte e Resistência

Dominando a Dinâmica do Mercado: Criando um Expert Advisor (EA) para Estratégia de Suporte e Resistência

Um guia abrangente para desenvolver um algoritmo de negociação automatizado baseado na estratégia de Suporte e Resistência. Informações detalhadas sobre todos os aspectos da criação de um expert advisor em MQL5 e testá-lo no MetaTrader 5 – desde a análise dos comportamentos de faixa de preço até o gerenciamento de risco.
preview
Soluções simples para trabalhar com indicadores

Soluções simples para trabalhar com indicadores

Neste artigo, explicarei como criar um painel simples para ajustar as configurações de um indicador diretamente no gráfico e quais modificações são necessárias no indicador para integrar esse painel. O artigo é voltado exclusivamente para quem está começando a aprender a linguagem MQL5.
preview
Redes neurais de maneira fácil (Parte 59): dicotomia do controle (DoC)

Redes neurais de maneira fácil (Parte 59): dicotomia do controle (DoC)

No artigo anterior, nos familiarizamos com o transformador de decisões. Porém, o complexo ambiente estocástico do mercado de moedas não permitiu revelar totalmente o potencial do método apresentado. Hoje, quero apresentar a vocês um algoritmo focado em melhorar o desempenho dos algoritmos em ambientes estocásticos.
preview
Desenvolvendo um sistema de Replay (Parte 37): Pavimentando o Terreno (I)

Desenvolvendo um sistema de Replay (Parte 37): Pavimentando o Terreno (I)

Neste artigo iremos começar a fazer algo, que eu gostaria de ter feito a muito mais tempo. No entanto, por falta de "terreno firme", não me sentia seguro para apresentar de forma publica. Mas agora já tenho as bases para poder fazer o que iremos começar a fazer, a partir de agora. É bom que foque ao máximo em compreender o conteúdo deste artigo. E não estou dizendo isto, apenas para que você o leia apenas por ler. Quero e preciso enfatizar que se você não entender este artigo especifico. Poderá abandonar completamente qualquer esperança em compreender o conteúdo dos próximos.
preview
DoEasy. Funções de serviço (Parte 1): Padrões de preços

DoEasy. Funções de serviço (Parte 1): Padrões de preços

Neste artigo, começaremos a desenvolver métodos para buscar padrões de preço usando dados de séries temporais. Um padrão tem um certo conjunto de parâmetros, comuns a qualquer tipo de padrão. Todos os dados desse tipo serão concentrados na classe de objetos do padrão abstrato base. No artigo atual, criaremos uma classe de padrão abstrato e uma classe de padrão Pin Bar.
preview
Redes neurais de maneira fácil (Parte 49): Soft Actor-Critic (SAC)

Redes neurais de maneira fácil (Parte 49): Soft Actor-Critic (SAC)

Continuamos nossa exploração dos algoritmos de aprendizado por reforço na resolução de problemas em espaços de ação contínua. Neste artigo, apresento o algoritmo Soft Actor-Critic (SAC). A principal vantagem do SAC está em sua capacidade de encontrar políticas ótimas que não apenas maximizam a recompensa esperada, mas também têm a máxima entropia (diversidade) de ações.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 07): Dendrogramas

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 07): Dendrogramas

A classificação de dados para análise e previsão é uma área muito diversificada do aprendizado de máquina, que compreende um grande número de abordagens e métodos. Neste artigo, examinaremos uma dessas abordagens, nomeadamente o agrupamento hierárquico aglomerativo (Agglomerative Hierarchical Clustering).
preview
Desenvolvendo um sistema de Replay (Parte 69): Acertando o tempo (II)

Desenvolvendo um sistema de Replay (Parte 69): Acertando o tempo (II)

Aqui vamos entender, por que estamos precisamos usar a chamada iSpread. Ao mesmo tempo, vamos entender como o sistema consegue nos informar o tempo restante da barra, quando não temos ticks a serem usados para fazer tal coisa. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
EA de grid-hedge modificado em MQL5 (Parte II): Criando um EA de grade simples

EA de grid-hedge modificado em MQL5 (Parte II): Criando um EA de grade simples

O artigo aborda a estratégia clássica de grade, descrevendo detalhadamente sua automação com um EA em MQL5 e analisando os resultados iniciais dos testes históricos. Também enfatiza a necessidade de manter posições por um longo período e considera a possibilidade de otimização de parâmetros-chave (como distância, take-profit e tamanhos de lotes) em futuras partes. O objetivo desta série de artigos é aumentar a eficiência da estratégia de negociação e sua adaptabilidade a diferentes condições de mercado.
preview
Desenvolvendo um EA multimoeda (Parte 4): Ordens virtuais pendentes e salvamento de estado

Desenvolvendo um EA multimoeda (Parte 4): Ordens virtuais pendentes e salvamento de estado

Ao começar a desenvolver um EA multimoeda, já alcançamos alguns resultados e realizamos várias iterações de melhoria do código. No entanto, nosso EA não podia trabalhar com ordens pendentes e retomar o trabalho após reiniciar o terminal. Vamos adicionar essas funcionalidades.
preview
Teoria das Categorias em MQL5 (Parte 6): produtos fibrados monomórficos e coprodutos fibrados epimórficos

Teoria das Categorias em MQL5 (Parte 6): produtos fibrados monomórficos e coprodutos fibrados epimórficos

A teoria das categorias é um ramo diversificado e em expansão da matemática que só recentemente começou a ser abordado na comunidade MQL5. Esta série de artigos tem como objetivo analisar alguns de seus conceitos para criar uma biblioteca aberta e utilizar ainda mais essa maravilhosa seção na criação de estratégias de negociação.
preview
Representações no domínio da frequência de séries temporais: O espectro de potência

Representações no domínio da frequência de séries temporais: O espectro de potência

Neste artigo, analisaremos os métodos relacionados à análise de séries temporais no domínio da frequência. Ele também se concentrará na utilidade do estudo de funções espectrais de séries temporais na criação de modelos preditivos. Além disso, discutimos algumas perspectivas promissoras para a análise de séries temporais no domínio da frequência usando a transformada discreta de Fourier (DFT).
preview
Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 3): Prefixos/sufixos de símbolos e sessão de negociação

Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 3): Prefixos/sufixos de símbolos e sessão de negociação

Recebi comentários de vários colegas traders sobre como usar o Expert Advisor multimoedas que estou analisando com corretoras que usam prefixos e/ou sufixos com nomes de símbolos, bem como sobre como implementar fusos horários de negociação ou sessões de negociação no Expert Advisor.
preview
EA de grid-hedge modificado em MQL5 (Parte III): Otimização de uma estratégia de cobertura simples (I)

EA de grid-hedge modificado em MQL5 (Parte III): Otimização de uma estratégia de cobertura simples (I)

Na terceira parte, retornamos aos EAs Simple Hedge e Simple Grid, desenvolvidos anteriormente. Agora, vamos melhorar o Simple Hedge EA por meio de análise matemática e abordagem de força bruta (brute force) com o objetivo de otimizar o uso da estratégia. Este artigo se aprofunda na otimização matemática da estratégia, estabelecendo a base para a futura pesquisa de otimização baseada em código nas partes seguintes.
preview
DoEasy. Controles (Parte 8): Objetos básicos do WinForms por categoria, controles GroupBox e CheckBox

DoEasy. Controles (Parte 8): Objetos básicos do WinForms por categoria, controles GroupBox e CheckBox

Neste artigo, veremos como criar dois objetos WinForms, especificamente GroupBox e CheckBox, e também geraremos objetos básicos para categorias de objetos WinForms. Todos os objetos criados ainda são estáticos, ou seja, não possuem a funcionalidade de interação com o mouse.
preview
Do básico ao intermediário: Definições (II)

Do básico ao intermediário: Definições (II)

Neste artigo iremos ver e explorar um pouco mais sobre a diretiva #define. Só que agora com o foco voltado para a segunda forma de utilização desta diretiva. Ou seja, a criação de macros. Como sei que este material pode vir a ser um pouco complicado no começo. Procurei utilizar uma aplicação que já vem sendo explorada a algum tempo. Então espero que se divirtam com o conteúdo deste artigo.
preview
Redes neurais em trading: Resultados práticos do método TEMPO

Redes neurais em trading: Resultados práticos do método TEMPO

Damos continuidade à exploração do método TEMPO. Neste artigo, avaliaremos a eficácia prática das abordagens propostas com base em dados históricos reais.
preview
Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 19): Ajustes necessários

Desenvolvendo um sistema de Replay - Simulação de mercado (Parte 19): Ajustes necessários

O que de fato vamos fazer aqui, é preparar o terreno, de forma que quando for preciso adicionar algumas novas coisas ao código, isto aconteça de forma suave e tranquila. O código atual ainda não consegue cobrir ou dar cabo de algumas coisas, que serão necessárias para um avanço significativo. Precisamos que tudo seja construído de maneira que o esforço de implementação de algumas coisas seja o menor possível. Se isto for feito adequadamente teremos a possibilidade de ter um sistema realmente bastante versátil. Sendo capaz de se adaptar muito facilmente a qualquer situação que for preciso ser coberta.
preview
Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 2): Sinais do indicador - Parabolic SAR multiframe

Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 2): Sinais do indicador - Parabolic SAR multiframe

Neste artigo, por EA multimoeda, entendemos um robô investidor ou um robô de negociação que pode negociar (abrir/fechar ordens, gerenciar ordens como trailing-stop-loss e trailing profit) mais de um par de moedas em um gráfico. Desta vez, usaremos apenas um indicador, o Parabolic SAR ou iSAR, em vários timeframes, começando com PERIOD_M15 e terminando com PERIOD_D1.
Algoritmos de otimização populacional
Algoritmos de otimização populacional

Algoritmos de otimização populacional

Este é um artigo introdutório sobre a classificação do algoritmo de otimização (OA). O artigo tenta criar um banco de teste (um conjunto de funções), que deve ser usado para comparar os OAs e, talvez, identificar o algoritmo mais universal de todos os que são amplamente conhecidos.
preview
Padrões de projeto no MQL5 (Parte I): Padrões criacionais (creational patterns)

Padrões de projeto no MQL5 (Parte I): Padrões criacionais (creational patterns)

Existem métodos que podem ser usados para resolver problemas típicos. Depois de entender como usar esses métodos, você pode então escrever programas de maneira prática e aplicar o conceito DRY ("Don't Repeat Yourself" - "Não se Repita"). Neste contexto, os padrões de projeto são extremamente úteis, pois apresentam soluções para problemas bem descritos e recorrentes.
preview
Implementação do EA Deus: Negociação automatizada com RSI e médias móveis em MQL5

Implementação do EA Deus: Negociação automatizada com RSI e médias móveis em MQL5

O artigo descreve as etapas para a implementação do EA Deus baseado nos indicadores RSI e média móvel para gerenciar a negociação automatizada.
preview
Redes neurais de maneira fácil (Parte 48): métodos para reduzir a superestimação dos valores da função Q

Redes neurais de maneira fácil (Parte 48): métodos para reduzir a superestimação dos valores da função Q

No artigo anterior, nós exploramos o método DDPG, projetado para treinar modelos em espaços de ação contínua. No entanto, como outros métodos de aprendizado Q, ele está sujeito ao problema da sobreavaliação dos valores da função Q. Esse problema geralmente leva eventualmente ao treinamento de um agente com uma estratégia não otimizada. Neste artigo, examinaremos algumas abordagens para superar o problema mencionado.
preview
Desenvolvendo um sistema de Replay (Parte 70): Acertando o tempo (III)

Desenvolvendo um sistema de Replay (Parte 70): Acertando o tempo (III)

Neste artigo mostrarei a maneira correta e funcional de usar a função CustomBookAdd. Apesar de parecer se algo simples, fazer isto tem muitas implicações. Entre elas permitir que digamos ao indicador de mouse, se o ativo customizado está em leilão; Em negociação, ou o mercado está fechado. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Algoritmo de Evolução do Casco da Tartaruga (Turtle Shell Evolution Algorithm, TSEA)

Algoritmo de Evolução do Casco da Tartaruga (Turtle Shell Evolution Algorithm, TSEA)

Um algoritmo de otimização único, inspirado na evolução do casco da tartaruga. O algoritmo TSEA emula a formação gradual de áreas queratinizadas da pele, que representam as soluções ótimas para o problema. As melhores soluções tornam-se mais "duras" e se aproximam da superfície externa, enquanto as soluções menos bem-sucedidas permanecem "macias" e ficam na parte interna. O algoritmo utiliza a clusterização das soluções com base na qualidade e na distância, permitindo preservar as opções menos bem-sucedidas, garantindo flexibilidade e adaptabilidade.