Artículos de programación MQL4 y MQL5

icon

Aprenda el lenguaje de programación de estrategias comerciales MQL5 leyendo numerosos artículos la mayor parte de los cuales han sido escritos por Ustedes - miembros de MQL5.community. Con el fin de buscar rápidamente la respuesta sobre una u otra cuestión de programación, todos los artículos están divididos en categorías: "Integración", "Probador", "Estrategias comerciales", etc.

Siga las nuevas publicaciones y participe en sus discusiones en el foro de MQL5.community!

Nuevo artículo
últimas | mejores
preview
Creación de una interfaz gráfica de usuario interactiva en MQL5 (Parte 2): Añadir controles y capacidad de respuesta

Creación de una interfaz gráfica de usuario interactiva en MQL5 (Parte 2): Añadir controles y capacidad de respuesta

Mejorar el panel GUI de MQL5 con funciones dinámicas puede mejorar significativamente la experiencia comercial de los usuarios. Al incorporar elementos interactivos, efectos de desplazamiento y actualizaciones de datos en tiempo real, el panel se convierte en una herramienta poderosa para los traders modernos.
preview
Cómo desarrollar un agente de aprendizaje por refuerzo en MQL5 con Integración RestAPI (Parte 2): Funciones MQL5 para interacción HTTP con API REST del juego de tres en raya

Cómo desarrollar un agente de aprendizaje por refuerzo en MQL5 con Integración RestAPI (Parte 2): Funciones MQL5 para interacción HTTP con API REST del juego de tres en raya

Este artículo detalla cómo MQL5 puede interactuar con Python y FastAPI, utilizando llamadas HTTP en MQL5 para comunicarse con un juego de tres en raya en Python. En él se discute la creación de una API con FastAPI para esta integración e se incluye un script de prueba en MQL5, resaltando la versatilidad del MQL5, la simplicidad del Python y la eficiencia del FastAPI en la conexión de diferentes tecnologías para soluciones innovadoras.
preview
Redes neuronales: así de sencillo (Parte 89): Transformador de descomposición de la frecuencia de señal (FEDformer)

Redes neuronales: así de sencillo (Parte 89): Transformador de descomposición de la frecuencia de señal (FEDformer)

Todos los modelos de los que hemos hablado anteriormente analizan el estado del entorno como una secuencia temporal. Sin embargo, las propias series temporales también pueden representarse como características de frecuencia. En este artículo, presentaremos un algoritmo que utiliza las características de frecuencia de una secuencia temporal para predecir los estados futuros.
preview
Aprendizaje automático y Data Science (Parte 24): Predicción de series temporales de divisas mediante modelos de IA convencionales

Aprendizaje automático y Data Science (Parte 24): Predicción de series temporales de divisas mediante modelos de IA convencionales

En los mercados de divisas es muy difícil predecir la tendencia futura sin tener una idea del pasado. Muy pocos modelos de aprendizaje automático son capaces de hacer predicciones futuras considerando valores pasados. En este artículo, vamos a discutir cómo podemos utilizar modelos de inteligencia artificial clásicos (no de series temporales) para superar al mercado.
preview
Características del Wizard MQL5 que debe conocer (Parte 42): Oscilador ADX

Características del Wizard MQL5 que debe conocer (Parte 42): Oscilador ADX

El ADX es otro indicador técnico relativamente popular utilizado por algunos traders para medir la fuerza de una tendencia predominante. Actuando como una combinación de otros dos indicadores, se presenta como un oscilador cuyos patrones exploramos en este artículo con la ayuda del asistente de ensamblaje MQL5 y sus clases de soporte.
preview
Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrollar y probar la estrategia de negociación con LLMs (I) Ajuste fino

Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrollar y probar la estrategia de negociación con LLMs (I) Ajuste fino

Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar potentes LLM en nuestras operaciones algorítmicas. Para la mayoría de la gente, es difícil ajustar estos potentes modelos a sus necesidades, desplegarlos localmente y luego aplicarlos a la negociación algorítmica. Esta serie de artículos abordará paso a paso la consecución de este objetivo.
preview
Soluciones sencillas para trabajar cómodamente con indicadores

Soluciones sencillas para trabajar cómodamente con indicadores

En este artículo le contaremos cómo crear un panel simple para cambiar la configuración del indicador directamente desde el gráfico, y qué cambios se deberán introducir en el indicador para conectar este panel. Este artículo está dirigido exclusivamente a aquellos que acaban de empezar a familiarizarse con MQL5.
preview
Cómo implementar la optimización automática en los asesores expertos de MQL5

Cómo implementar la optimización automática en los asesores expertos de MQL5

Guía paso a paso para la optimización automática en MQL5 para Asesores Expertos. Cubriremos la lógica de optimización robusta, las mejores prácticas para la selección de parámetros y cómo reconstruir estrategias con pruebas retrospectivas. Además, se discutirán métodos de nivel superior, como la optimización del avance, para mejorar su enfoque comercial.
preview
Algoritmo de optimización del comportamiento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Método de Schwefel, método de Box-Muller

Algoritmo de optimización del comportamiento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Método de Schwefel, método de Box-Muller

Este artículo presenta una fascinante inmersión en el mundo del comportamiento social de los organismos vivos y su influencia en la creación de un nuevo modelo matemático, el ASBO (Adaptive Social Behavior Optimisation). Hoy exploraremos cómo los principios de liderazgo, vecindad y cooperación observados en las sociedades de seres vivos inspiran el desarrollo de algoritmos de optimización innovadores.
preview
Medimos la informatividad de los indicadores

Medimos la informatividad de los indicadores

El aprendizaje automático se ha convertido en una técnica popular de desarrollo de estrategias. Por lo general, en el trading se presta más atención a la maximización de la rentabilidad y la precisión de los pronósticos. Al mismo tiempo, el procesamiento de los datos utilizados para la construcción de los modelos predictivos permanece en la periferia. En este artículo, analizaremos el uso del concepto de entropía para evaluar la idoneidad de los indicadores en la construcción de modelos predictivos, como se describe en el libro «Testing and Tuning Market Trading Systems» de Timothy Masters.
preview
Algoritmos de optimización de la población: Modificamos la forma y desplazamos las distribuciones de probabilidad y realizamos pruebas con el cefalópodo inteligente (Smart Cephalopod, SC)

Algoritmos de optimización de la población: Modificamos la forma y desplazamos las distribuciones de probabilidad y realizamos pruebas con el cefalópodo inteligente (Smart Cephalopod, SC)

Este artículo investigará qué efectos provoca el cambio de la forma de las distribuciones de probabilidad en el rendimiento de los algoritmos de optimización. Hoy realizaremos experimentos con el algoritmo de prueba "Smart Cephalopod" (SC) para evaluar la eficacia de distintas distribuciones de probabilidad en el contexto de problemas de optimización.
preview
Características del Wizard MQL5 que debe conocer (Parte 16): Método de componentes principales con vectores propios

Características del Wizard MQL5 que debe conocer (Parte 16): Método de componentes principales con vectores propios

En este artículo analizaremos el método de componentes principales, una técnica de reducción de la dimensionalidad para el análisis de datos, y cómo podemos aplicar este utilizando valores propios y vectores. Como siempre, intentaremos desarrollar un prototipo de la clase de señales del asesor experto que se pueda utilizar en el Wizard MQL5.
preview
Gráficos en la biblioteca DoEasy (Parte 97): Procesamiento independiente del desplazamiento de los objetos de formulario

Gráficos en la biblioteca DoEasy (Parte 97): Procesamiento independiente del desplazamiento de los objetos de formulario

En el presente artículo, analizaremos la implementación del desplazamiento independiente de cualquier objeto de formulario con el ratón, y también complementaremos la biblioteca con mensajes de error y nuevas propiedades de transacciones previamente introducidos en el terminal y MQL5.
preview
Experimentos con redes neuronales (Parte 5): Normalización de parámetros de entrada para su transmisión a una red neuronal

Experimentos con redes neuronales (Parte 5): Normalización de parámetros de entrada para su transmisión a una red neuronal

Las redes neuronales lo son todo. Vamos a comprobar en la práctica si esto es así. MetaTrader 5 como herramienta autosuficiente para el uso de redes neuronales en el trading. Una explicación sencilla.
preview
Aprendizaje automático y Data Science (Parte 22): Aprovechar las redes neuronales de autocodificadores para realizar operaciones más inteligentes pasando del ruido a la señal

Aprendizaje automático y Data Science (Parte 22): Aprovechar las redes neuronales de autocodificadores para realizar operaciones más inteligentes pasando del ruido a la señal

En el vertiginoso mundo de los mercados financieros, separar las señales significativas del ruido es crucial para operar con éxito. Al emplear sofisticadas arquitecturas de redes neuronales, los autocodificadores destacan a la hora de descubrir patrones ocultos en los datos de mercado, transformando datos ruidosos en información práctica. En este artículo, exploramos cómo los autocodificadores están revolucionando las prácticas de negociación, ofreciendo a los operadores una poderosa herramienta para mejorar la toma de decisiones y obtener una ventaja competitiva en los dinámicos mercados actuales.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 2): Fusionar indicadores nativos

Creación de un modelo de restricción de tendencia de velas (Parte 2): Fusionar indicadores nativos

Este artículo se centra en el aprovechamiento de los indicadores MetaTrader 5 incorporados para filtrar las señales fuera de tendencia. Avanzando desde el artículo anterior exploraremos cómo hacerlo utilizando código MQL5 para comunicar nuestra idea al programa final.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 5): Envío de comandos desde Telegram a MQL5 y recepción de respuestas en tiempo real

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 5): Envío de comandos desde Telegram a MQL5 y recepción de respuestas en tiempo real

En este artículo, creamos varias clases para facilitar la comunicación en tiempo real entre MQL5 y Telegram. Nos centramos en recuperar comandos de Telegram, decodificarlos e interpretarlos y enviar respuestas apropiadas. Al final, nos aseguramos de que estas interacciones se prueben eficazmente y estén operativas dentro del entorno comercial.
preview
Algoritmo de Partenogénesis Cíclica - Cyclic Parthenogenesis Algorithm (CPA)

Algoritmo de Partenogénesis Cíclica - Cyclic Parthenogenesis Algorithm (CPA)

En este trabajo, analizaremos un nuevo algoritmo de optimización basado en la población, el CPA (Cyclic Parthenogenesis Algorithm), inspirado en la estrategia reproductiva única de los pulgones. El algoritmo combina dos mecanismos de reproducción: la partenogénesis y la reproducción sexual, y utiliza una estructura de población colonial con posibilidad de migración entre colonias. Las características clave del algoritmo son el cambio adaptativo entre diferentes estrategias de cría y un sistema de intercambio de información entre colonias usando un mecanismo de vuelo.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 19): Ajustes necesarios

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 19): Ajustes necesarios

Lo que vamos a hacer aquí es preparar el terreno para que, cuando sea necesario agregar nuevas funciones al código, esto se haga de manera fluida y sencilla. El código actual aún no puede cubrir o manejar algunas cosas que serán necesarias para un progreso significativo. Necesitamos que todo se construya de manera que el esfuerzo de implementar algunas cosas sea lo más mínimo posible. Si esto se hace adecuadamente, tendremos la posibilidad de tener un sistema realmente muy versátil. Capaz de adaptarse muy fácilmente a cualquier situación que deba ser cubierta.
preview
Redes neuronales: así de sencillo (Parte 44): Estudiamos las habilidades de forma dinámica

Redes neuronales: así de sencillo (Parte 44): Estudiamos las habilidades de forma dinámica

En el artículo anterior, nos familiarizamos con el método DIAYN, que ofrece un algoritmo para el aprendizaje de diversas habilidades. El uso de las habilidades aprendidas puede aprovecharse en diversas tareas, pero estas habilidades pueden resultar bastante impredecibles, lo cual puede dificultar su uso. En este artículo, analizaremos un algoritmo para el aprendizaje de habilidades predecibles.
preview
El enfoque cuantitativo en la gestión de riesgos: Aplicación de un modelo VaR para la optimización de portafolios multidivisa con Python y MetaTrader 5

El enfoque cuantitativo en la gestión de riesgos: Aplicación de un modelo VaR para la optimización de portafolios multidivisa con Python y MetaTrader 5

Este artículo revelará el potencial del modelo Value at Risk (VaR) para optimizar un portafolio multidivisa. Usando el poder de Python y la funcionalidad de MetaTrader 5, hoy demostraremos cómo implementar el análisis VaR para la asignación eficiente de capital y la gestión de posiciones. Desde los fundamentos teóricos hasta la aplicación práctica, el artículo abarcará todos los aspectos de la aplicación de uno de los sistemas de cálculo del riesgo más sólidos, el VaR, a la negociación algorítmica.
preview
Trading algorítmico basado en patrones de reversión 3D

Trading algorítmico basado en patrones de reversión 3D

Hoy descubriremos al lector el nuevo mundo del trading automatizado con barras 3D. ¿Qué aspecto tiene un robot comercial basado en barras de precios multidimensionales, y pueden los clústeres "amarillos" de barras tridimensionales predecir los cambios de tendencia? ¿Cómo es el trading en múltiples dimensiones?
preview
Trabajando con las series temporales en la biblioteca DoEasy (Parte 57): Objeto de datos del búfer de indicador

Trabajando con las series temporales en la biblioteca DoEasy (Parte 57): Objeto de datos del búfer de indicador

En este artículo, vamos a desarrollar el objeto que incluirá todos los datos de un búfer de un indicador. Estos objetos serán necesarios para almacenar los datos de serie de los búferes de indicadores, a través de los cuales será posible ordenar y comparar los datos de los búferes de cualquier indicador, así como otros datos parecidos.
preview
Redes neuronales: así de sencillo (Parte 66): Problemática de la exploración en el entrenamiento offline

Redes neuronales: así de sencillo (Parte 66): Problemática de la exploración en el entrenamiento offline

El entrenamiento offline del modelo se realiza sobre los datos de una muestra de entrenamiento previamente preparada. Esto nos ofrecerá una serie de ventajas, pero la información sobre el entorno estará muy comprimida con respecto al tamaño de la muestra de entrenamiento, lo que, a su vez, limitará el alcance del estudio. En este artículo, querríamos familiarizarnos con un método que permite llenar la muestra de entrenamiento con los datos más diversos posibles.
preview
Aprendiendo a diseñar un sistema de trading con el oscilador Chaikin

Aprendiendo a diseñar un sistema de trading con el oscilador Chaikin

Aquí tenemos un nuevo artículo de nuestra serie destinada al estudio de indicadores técnicos populares y la creación de sistemas comerciales basados en ellos. En este artículo, trabajaremos con el indicador Chaikin Oscillator, el oscilador de Chaikin.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 9): Asesor Experto de múltiples estrategias (III)

Creación de un modelo de restricción de tendencia de velas (Parte 9): Asesor Experto de múltiples estrategias (III)

¡Bienvenidos a la tercera entrega de nuestra serie sobre tendencias! Hoy profundizaremos en el uso de la divergencia como estrategia para identificar puntos de entrada óptimos dentro de la tendencia diaria predominante. También presentaremos un mecanismo de bloqueo de ganancias personalizado, similar a un stop-loss dinámico, pero con mejoras únicas. Además, actualizaremos el asesor experto Trend Constraint a una versión más avanzada, incorporando una nueva condición de ejecución comercial para complementar las existentes. A medida que avanzamos, continuaremos explorando la aplicación práctica de MQL5 en el desarrollo algorítmico, brindándole información más detallada y técnicas prácticas.
preview
Trabajamos con matrices: ampliando la funcionalidad de la biblioteca estándar de matrices y vectores.

Trabajamos con matrices: ampliando la funcionalidad de la biblioteca estándar de matrices y vectores.

Las matrices sirven de base a los algoritmos de aprendizaje automático y a las computadoras en general por su capacidad para procesar con eficacia grandes operaciones matemáticas. La biblioteca estándar tiene todo lo que necesitamos, pero también podemos ampliarla añadiendo varias funciones al archivo utils.
preview
Características del Wizard MQL5 que debe conocer (Parte 6): Transformada de Fourier

Características del Wizard MQL5 que debe conocer (Parte 6): Transformada de Fourier

La transformada de Fourier, introducida por Joseph Fourier, es un medio para descomponer puntos de datos de ondas complejos en componentes de ondas simples. Esta característica puede resultar útil para los tráders, así que hablaremos de ella en este artículo.
preview
Redes neuronales: así de sencillo (Parte 54): Usamos un codificador aleatorio para una exploración eficiente (RE3)

Redes neuronales: así de sencillo (Parte 54): Usamos un codificador aleatorio para una exploración eficiente (RE3)

Siempre que analizamos métodos de aprendizaje por refuerzo, nos enfrentamos al problema de explorar eficientemente el entorno. Con frecuencia, la resolución de este problema hace que el algoritmo se complique, llevándonos al entrenamiento de modelos adicionales. En este artículo veremos un enfoque alternativo para resolver el presente problema.
preview
Desarrollamos un asesor experto multidivisa (Parte 11): Comenzamos a automatizar el proceso de optimización

Desarrollamos un asesor experto multidivisa (Parte 11): Comenzamos a automatizar el proceso de optimización

Para obtener un buen EA, tenemos que seleccionar muchos conjuntos adecuados de parámetros de instancias de estrategias comerciales para él. Esto puede hacerse manualmente ejecutando la optimización en diferentes símbolos y seleccionando después los mejores resultados. Pero resulta mejor delegar el trabajo en un programa y dedicarse a actividades más productivas.
preview
Redes neuronales: así de sencillo (Parte 38): Exploración auto-supervisada por desacuerdo (Self-Supervised Exploration via Disagreement)

Redes neuronales: así de sencillo (Parte 38): Exploración auto-supervisada por desacuerdo (Self-Supervised Exploration via Disagreement)

Uno de los principales retos del aprendizaje por refuerzo es la exploración del entorno. Con anterioridad, hemos aprendido un método de exploración basado en la curiosidad interior. Hoy queremos examinar otro algoritmo: la exploración mediante el desacuerdo.
preview
Redes neuronales: así de sencillo (Parte 39): Go-Explore: un enfoque diferente sobre la exploración

Redes neuronales: así de sencillo (Parte 39): Go-Explore: un enfoque diferente sobre la exploración

Continuamos con el tema de la exploración del entorno en los modelos de aprendizaje por refuerzo. En este artículo, analizaremos otro algoritmo: Go-Explore, que permite explorar eficazmente el entorno en la etapa de entrenamiento del modelo.
preview
Indicador de posiciones históricas en el gráfico como diagrama de sus ganancias/pérdidas

Indicador de posiciones históricas en el gráfico como diagrama de sus ganancias/pérdidas

En el artículo analizaremos una variante para obtener información sobre posiciones cerradas usando la historia de sus transacciones. Asimismo, crearemos un indicador sencillo que mostrará en forma de gráfico los beneficios/pérdidas aproximados de las posiciones en cada barra.
preview
Indicador de estimación de fuerza y debilidad de pares de divisas en MQL5 puro

Indicador de estimación de fuerza y debilidad de pares de divisas en MQL5 puro

Hoy crearemos un indicador profesional para analizar la fuerza de las divisas en MQL5. Esta guía paso a paso le enseñará cómo desarrollar una poderosa herramienta comercial con un tablero visual para MetaTrader 5. Asimismo, aprenderá a calcular la fuerza de los pares de divisas en múltiples marcos temporales (H1, H4, D1), a implementar actualizaciones dinámicas de datos y a crear una interfaz fácil de usar.
preview
Indicadores basados ​​en la clase CCanvas: Rellenando canales con transparencia

Indicadores basados ​​en la clase CCanvas: Rellenando canales con transparencia

En este artículo, analizaremos métodos utilizados para crear indicadores personalizados que se dibujan con la ayuda de la clase CCanvas de la Biblioteca estándar, y también consideraremos las propiedades de los gráficos para transformar coordenadas. Prestaremos especial atención a los indicadores que rellenan de transparencia el área entre las dos líneas.
preview
Patrones de diseño en MQL5 (Parte 4): Patrones conductuales 2

Patrones de diseño en MQL5 (Parte 4): Patrones conductuales 2

Este artículo concluye la serie sobre patrones de diseño en ingeniería de software. Ya hemos mencionado que existen tres tipos de patrones de diseño: de creación, estructurales y conductuales. Hoy perfeccionaremos los patrones conductuales restantes, que nos ayudarán a especificar la forma en que interactúan los objetos de manera que nuestro código sea limpio.
preview
Gráficos en la biblioteca DoEasy (Parte 98): Desplazamiento de los puntos de anclaje de los objetos gráficos estándar ampliados

Gráficos en la biblioteca DoEasy (Parte 98): Desplazamiento de los puntos de anclaje de los objetos gráficos estándar ampliados

En el presente artículo, continuaremos el desarrollo de los objetos gráficos estándar extendidos, y crearemos la funcionalidad necesaria para desplazar los puntos de pivote de los objetos gráficos compuestos usando los puntos de control para gestionar las coordenadas de los puntos de pivote del objeto gráfico.
preview
Redes neuronales: así de sencillo (Parte 61): El problema del optimismo en el aprendizaje por refuerzo offline

Redes neuronales: así de sencillo (Parte 61): El problema del optimismo en el aprendizaje por refuerzo offline

Durante el aprendizaje offline, optimizamos la política del Agente usando los datos de la muestra de entrenamiento. La estrategia resultante proporciona al Agente confianza en sus acciones. No obstante, dicho optimismo no siempre está justificado y puede acarrear mayores riesgos durante el funcionamiento del modelo. Hoy veremos un método para reducir estos riesgos.
preview
Gestión de Riesgo (Parte 4): Finalizando los Métodos Clave de la Clase

Gestión de Riesgo (Parte 4): Finalizando los Métodos Clave de la Clase

Este artículo constituye la cuarta entrega de nuestra serie sobre gestión de riesgo en MQL5, donde continuamos explorando técnicas avanzadas para proteger y optimizar nuestras estrategias de trading. Luego de haber sentado bases importantes en artículos anteriores, ahora nos centraremos en finalizar todos aquellos métodos pendientes que dejamos en la tercera parte, incluyendo funciones para verificar si se han alcanzado ciertos límites de pérdidas o ganancias. Además, presentaremos nuevos eventos clave que permiten una gestión más precisa y ágil.
preview
Trabajando con las series temporales en la biblioteca DoEasy (Parte 58): Series temporales de los datos de búferes de indicadores

Trabajando con las series temporales en la biblioteca DoEasy (Parte 58): Series temporales de los datos de búferes de indicadores

En conclusión del tema de trabajo con series temporales, vamos a organizar el almacenamiento, la búsqueda y la ordenación de los datos que se guardan en los búferes de indicadores. En el futuro, eso nos permitirá realizar el análisis a base de los valores de los indicadores que se crean a base de la biblioteca en nuestros programas. El concepto general de todas las clases de colección de la biblioteca permite encontrar fácilmente los datos necesarios en la colección correspondiente, y por tanto, lo mismo también será posible en la clase que vamos a crear hoy.