Trendkriterien im Handel
Trends sind ein wichtiger Bestandteil vieler Handelsstrategien. In diesem Artikel werden wir einige der Instrumente zur Ermittlung von Trends und deren Merkmale betrachten. Das Verständnis und die richtige Interpretation von Trends können die Handelseffizienz erheblich verbessern und die Risiken minimieren.
Neuronale Netze im Handel: Ein Multi-Agent Self-Adaptive Modell (letzter Teil)
Im vorangegangenen Artikel haben wir das adaptive Multi-Agenten-System MASA vorgestellt, das Reinforcement-Learning-Ansätze und selbstanpassende Strategien kombiniert und so ein harmonisches Gleichgewicht zwischen Rentabilität und Risiko unter turbulenten Marktbedingungen ermöglicht. Wir haben die Funktionalität der einzelnen Agenten in diesem Rahmen aufgebaut. In diesem Artikel setzen wir die begonnene Arbeit fort und bringen sie zu einem logischen Abschluss.
Neuronale Netze im Handel: Ein selbstanpassendes Multi-Agenten-Modell (MASA)
Ich lade Sie ein, sich mit dem Multi-Agent Self-Adaptive (MASA) Framework vertraut zu machen, das Reinforcement Learning und adaptive Strategien kombiniert und ein harmonisches Gleichgewicht zwischen Rentabilität und Risikomanagement unter turbulenten Marktbedingungen bietet.
Implementierung von praktischen Modulen aus anderen Sprachen in MQL5 (Teil 02): Aufbau der REQUESTS-Bibliothek, inspiriert von Python
In diesem Artikel implementieren wir ein Modul, das den in Python angebotenen Anfragen ähnelt, um das Senden und Empfangen von Web-Anfragen in MetaTrader 5 mit MQL5 zu erleichtern.
MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 74): Verwendung von Ichimoku-Mustern und ADX-Wilder mit überwachtem Lernen
Wir knüpfen an unseren letzten Artikel an, in dem wir das Indikatorenpaar Ichimoku und ADX vorstellten, und untersuchen, wie dieses Duo durch überwachtes Lernen verbessert werden kann. Ichimoku und ADX sind ein Unterstützungs-/Widerstands- und komplementäres Paar bezüglich eines Trends. Unser überwachter Lernansatz verwendet ein neuronales Netzwerk, das den Deep Spectral Mixture Kernel einsetzt, um die Prognosen dieses Indikatorpaares zu verfeinern. Wie üblich erfolgt dies in einer nutzerdefinierten Signalklassendatei, die mit dem MQL5-Assistenten zur Zusammenstellung eines Expert Advisors arbeitet.
Einführung in MQL5 (Teil 18): Einführung in das Muster der Wolfe-Wellen
In diesem Artikel wird das Muster der Wolfe-Wellen im Detail erklärt, wobei sowohl die Abwärts- wie die Aufwärts-Variante behandelt wird. Außerdem wird die Logik zur Identifizierung gültiger Kauf- und Verkaufsarrangements auf der Grundlage dieses fortgeschrittenen Chartmusters Schritt für Schritt erläutert.
MQL5-Handelswerkzeuge (Teil 5): Erstellen eines Ticker-Laufbands für eine Symbolüberwachung in Echtzeit
In diesem Artikel entwickeln wir ein Ticker-Laufband in MQL5 für die Echtzeitüberwachung mehrerer Symbole, das Geldkurse, Spreads und tägliche prozentuale Veränderungen mit Scrolleffekten anzeigt. Wir implementieren anpassbare Schriftarten, Farben und Bildlaufgeschwindigkeiten, um Preisbewegungen und Trends effektiv hervorzuheben.
MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 73): Verwendung von Ichimoku-Mustern und ADX-Wilder
Der Ichimoku-Kinko-Hyo-Indikator und der Oszillator ADX-Wilder sind ein Paar, das ergänzend in einem MQL5 Expert Advisor verwendet werden kann. Das Ichimoku hat viele Facetten, aber in diesem Artikel verlassen wir uns hauptsächlich auf seine Fähigkeit, Unterstützungs- und Widerstandsniveaus zu definieren. Inzwischen verwenden wir auch den ADX, um unseren Trend zu definieren. Wie üblich verwenden wir den MQL5-Assistenten, um das Potenzial dieser beiden zu erstellen und zu testen.
Vom Neuling zum Experten: Animierte Nachrichtenschlagzeilen mit MQL5 (VI) – Strategie von schwebenden Aufträgen für den Nachrichtenhandel
In diesem Artikel verlagern wir den Schwerpunkt auf die Integration einer nachrichtengesteuerten Auftragsausführungslogik, die den EA in die Lage versetzt, zu handeln und nicht nur zu informieren. Begleiten Sie uns, wenn wir erforschen, wie man die automatisierte Handelsausführung in MQL5 implementiert und den News Headline EA zu einem vollständig reaktionsfähigen Handelssystem erweitert. Expert Advisors bieten den Entwicklern von Algorithmen erhebliche Vorteile, da sie eine Vielzahl von Funktionen unterstützen. Bislang haben wir uns auf die Entwicklung eines Tools zur Präsentation von Nachrichten und Kalenderereignissen konzentriert, das mit integrierten KI-Einsichten und technischen Indikatoren ausgestattet ist.
MQL5-Handelswerkzeuge (Teil 4): Verbesserung des Dashboards des Multi-Timeframe-Scanners mit dynamischer Positionierung und Umschaltfunktionen
In diesem Artikel erweitern wir das MQL5 Multi-Timeframe Scanner Dashboard mit beweglichen und umschaltbaren Funktionen. Wir ermöglichen das Verschieben des Dashboards und eine Option zum Minimieren/Maximieren für eine bessere Bildschirmnutzung. Wir implementieren und testen diese Verbesserungen für eine verbesserte Handelsflexibilität.
Selbstoptimierende Expert Advisors in MQL5 (Teil 9): Kreuzen zweier gleitender Durchschnitte
Dieser Artikel beschreibt den Aufbau einer Strategie des Kreuzens zweier gleitender Durchschnitte, die Signale aus einem höheren Zeitrahmen (D1) verwendet, um Einstiege auf einem niedrigeren Zeitrahmen (M15) zu steuern, wobei die Stop-Loss-Niveaus aus einem Zeitrahmen mit mittlerem Risiko (H4) berechnet werden. Es werden Systemkonstanten, nutzerdefinierte Enumerationen und Logik für trendfolgende und zum Mittelwert rückkehrende Modi eingeführt, wobei der Schwerpunkt auf Modularität und künftige Optimierung mithilfe eines genetischen Algorithmus liegt. Der Ansatz ermöglicht flexible Einstiegs- und Ausstiegsbedingungen und zielt darauf ab, die Signalverzögerung zu verringern und das Handels-Timing zu verbessern, indem Einstiegsmöglichkeiten im unteren Zeitrahmen mit Trends im oberen Zeitrahmen abgestimmt werden.
Automatisieren von Handelsstrategien in MQL5 (Teil 23): Zone Recovery mit Trailing- und Basket-Logik
In diesem Artikel erweitern wir unser Zone Recovery System durch die Einführung von Trailing-Stops und Multi-Basket-Handelsfunktionen. Wir untersuchen, wie die verbesserte Architektur dynamische Trailing-Stops verwendet, um Gewinne zu sichern, und ein Basket-Management-System, um mehrere Handelssignale effizient zu verarbeiten. Durch Implementierung und Backtests demonstrieren wir ein robusteres Handelssystem, das auf eine adaptive Marktperformance zugeschnitten ist.
Selbstoptimierende Expert Advisors in MQL5 (Teil 8): Analyse mehrerer Strategien (3) – Gewichtetes Abstimmungsverhalten
In diesem Artikel wird untersucht, wie die Bestimmung der optimalen Anzahl von Strategien in einem Ensemble eine komplexe Aufgabe sein kann, die durch den Einsatz des genetischen Optimierers von MetaTrader 5 leichter zu lösen ist. Die MQL5 Cloud wird auch als Schlüsselressource zur Beschleunigung von Backtests und Optimierung eingesetzt. Alles in allem schafft unsere Diskussion hier die Grundlage für die Entwicklung statistischer Modelle zur Bewertung und Verbesserung von Handelsstrategien auf der Grundlage unserer ersten Ensemble-Ergebnisse.
Automatisieren von Handelsstrategien in MQL5 (Teil 22): Erstellen eines Zone Recovery Systems für den Trendhandel mit Envelopes
In diesem Artikel entwickeln wir ein Zone Recovery System, das mit einer Envelopes-Trend-Handelsstrategie in MQL5 integriert ist. Wir skizzieren die Architektur für die Verwendung von RSI- und Envelopes-Indikatoren, um Handelsgeschäfte auszulösen und Erholungszonen zu verwalten, um Verluste zu mindern. Durch Implementierung und Backtests zeigen wir, wie man ein effektives automatisches Handelssystem für dynamische Märkte aufbaut.
MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 75): Verwendung des Awesome Oszillators und des Envelopes
Der Awesome Oscillator von Bill Williams und der Envelopes-Kanal sind ein Paar, das komplementär in einem MQL5 Expert Advisor verwendet werden kann. Wir verwenden den Awesome Oscillator wegen seiner Fähigkeit, Trends zu erkennen, während der Envelope-Kanal zur Definition unserer Unterstützungs-/Widerstandsniveaus herangezogen wird. Bei der Erkundung dieser Indikatorpaarung verwenden wir den MQL5-Assistenten, um das Potenzial dieser beiden Indikatoren zu ermitteln und zu testen.
Automatisieren von Handelsstrategien in MQL5 (Teil 21): Verbesserung des Handels mit neuronalen Netzen durch adaptive Lernraten
In diesem Artikel verbessern wir eine Handelsstrategie mit neuronalen Netzen in MQL5 mit einer adaptiven Lernrate, um die Genauigkeit zu erhöhen. Wir entwerfen und implementieren diesen Mechanismus und testen anschließend seine Leistungsfähigkeit. Der Artikel schließt mit Optimierungserkenntnissen für den algorithmischen Handel.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 72): Verwendung der Muster von MACD und OBV mit überwachtem Lernen
Wir knüpfen an unseren letzten Artikel an, in dem wir das Indikatorpaar MACD und OBV vorgestellt haben, und untersuchen, wie dieses Paar durch maschinelles Lernen verbessert werden kann. MACD und OBV ergänzen sich in Bezug auf Trend und Volumen. Unser Ansatz des maschinellen Lernens verwendet ein neuronales Faltungsnetzwerk, das bei der Feinabstimmung der Prognosen dieses Indikatorpaares den Exponential-Kernel bei der Dimensionierung seiner Kerne und Kanäle einsetzt. Wie immer wird dies in einer nutzerdefinierten Signalklassendatei durchgeführt, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.
Senden von Nachrichten von MQL5 an Discord, Erstellen eines Discord-Bots für MetaTrader 5
Ähnlich wie Telegram ist Discord in der Lage, Informationen und Nachrichten im JSON-Format über seine Kommunikations-APIs zu empfangen. In diesem Artikel werden wir untersuchen, wie Sie Discord-APIs verwenden können, um Handelssignale und Updates von MetaTrader 5 an Ihre Discord-Handelsgemeinschaft zu senden.
MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 71): Verwendung der Muster des MACD und des OBV
Die Oszillatoren Moving-Average-Convergence-Divergence (MACD) und On-Balance-Volume (OBV) sind ein weiteres Paar von Indikatoren, die in Verbindung mit einem MQL5 Expert Advisor verwendet werden können. Wie in dieser Artikelserie üblich, ist diese Paarung komplementär, wobei der MACD die Trends bestätigt, während der OBV das Volumen überprüft. Wie üblich verwenden wir den MQL5-Assistenten, um das Potenzial dieser beiden zu erstellen und zu testen.
Datenwissenschaft und ML (Teil 45): Forex Zeitreihenprognosen mit dem Modell PROPHET von Facebook
Das von Facebook entwickelte Modell Prophet ist ein robustes Zeitreihen-Prognoseinstrument, das Trends, Saisonalität und Feiertagseffekte mit minimalem manuellem Aufwand erfassen kann. Sie wurde in großem Umfang für die Bedarfsprognose und die Unternehmensplanung eingesetzt. In diesem Artikel untersuchen wir die Effektivität von Prophet bei der Vorhersage der Volatilität von Deviseninstrumenten und zeigen, wie es über die traditionellen Geschäftsanwendungen hinaus eingesetzt werden kann.
Datenwissenschaft und ML (Teil 43): Erkennen verborgener Muster in Indikatordaten unter Verwendung Latenter Gaußscher Mischmodelle (LGMM)
Haben Sie sich jemals das Horoskop angesehen und das seltsame Gefühl gehabt, dass sich unter der Oberfläche ein Muster verbirgt? Ein Geheimcode, der Ihnen verrät, wohin sich die Preise entwickeln werden, wenn Sie ihn nur knacken könnten? Darf ich vorstellen: LGMM, Erkennen verborgener Muster im Markt. Ein maschinelles Lernmodell, das dabei hilft, diese verborgenen Muster im Markt zu erkennen.
Datenwissenschaft und ML (Teil 44): Forex OHLC Zeitreihenprognose mit Vektor-Autoregression (VAR)
Entdecken Sie, wie Vektor-Autoregressions-Modelle (VAR) Forex OHLC (Open, High, Low und Close) Zeitreihendaten prognostizieren können. Dieser Artikel befasst sich mit der VAR-Implementierung, dem Modelltraining und der Echtzeitprognose in MetaTrader 5 und hilft Händlern, voneinander abhängige Währungsbewegungen zu analysieren und ihre Handelsstrategien zu verbessern.
MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 70): Verwendung der Muster von SAR und RVI mit einem Exponential-Kernel-Netzwerk
Wir knüpfen an unseren letzten Artikel an, in dem wir das Indikatorpaar SAR und RVI vorstellten, und überlegen, wie dieses Indikatorpaar durch maschinelles Lernen erweitert werden kann. SAR und RVI sind eine komplementäre Paarung von Trend und Momentum. Unser Ansatz des maschinellen Lernens verwendet ein neuronales Faltungsnetzwerk, das bei der Feinabstimmung der Prognosen dieses Indikatorpaares den Exponential-Kernel bei der Dimensionierung seiner Kerne und Kanäle einsetzt. Wie immer wird dies in einer nutzerdefinierten Signalklassendatei durchgeführt, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.
MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 69): Verwendung der Muster von SAR und RVI
Der Parabolic-SAR (SAR) und der Relative Vigour Index (RVI) sind ein weiteres Paar von Indikatoren, die in Verbindung mit einem MQL5 Expert Advisor verwendet werden können. Auch dieses Indikatorpaar ist, wie die anderen, die wir in der Vergangenheit behandelt haben, komplementär, da der SAR den Trend definiert, während der RVI das Momentum überprüft. Wie üblich verwenden wir den MQL5-Assistenten, um das Potenzial dieser Indikatorenkombination zu ermitteln und zu testen.
Automatisieren von Handelsstrategien in MQL5 (Teil 20): Multi-Symbol-Strategie mit CCI und AO
In diesem Artikel erstellen wir eine Multi-Symbol-Handelsstrategie, die CCI- und AO-Indikatoren verwendet, um Trendumkehrungen zu erkennen. Wir behandeln seinen Entwurf, die MQL5-Implementierung und den Backtest-Prozess. Der Artikel schließt mit Tipps zur Leistungssteigerung.
Einführung in MQL5 (Teil 17): Aufbau von Expert Advisors für eine Trendumkehr
Dieser Artikel zeigt Anfängern, wie man einen Expert Advisor (EA) in MQL5 erstellt, der auf Basis der Erkennung von Chart-Mustern mit Trendlinienausbrüchen und Umkehrungen handelt. Indem der Leser lernt, wie man Trendlinienwerte dynamisch abruft und mit der Preisaktion vergleicht, wird er in der Lage sein, EAs zu entwickeln, die in der Lage sind, Chart-Muster wie steigende und fallende Trendlinien, Kanäle, Keile, Dreiecke und mehr zu erkennen und zu handeln.
Erstellen von MQL5-ähnlichen Handelsklassen in Python für MetaTrader 5
Das MetaTrader 5 Python-Paket bietet eine einfache Möglichkeit, Handelsanwendungen für die MetaTrader 5-Plattform in der Sprache Python zu erstellen. Obwohl dieses Modul ein leistungsstarkes und nützliches Werkzeug ist, ist es nicht so einfach wie die MQL5-Programmiersprache, wenn es darum geht, eine algorithmische Handelslösung zu erstellen. In diesem Artikel werden wir Handelsklassen erstellen, die den in MQL5 angebotenen ähnlich sind, um eine ähnliche Syntax zu schaffen und es einfacher zu machen, Handelsroboter in Python wie in MQL5 zu erstellen.
Einführung in MQL5 (Teil 16): Aufbau von Expert Advisors mit technischen Chart-Mustern
Dieser Artikel führt Anfänger in den Aufbau eines MQL5 Expert Advisors ein, der ein klassisches technisches Chart-Muster - Kopf und Schultern - identifiziert und handelt. Sie erfahren, wie Sie das Muster anhand der Preisentwicklung erkennen, es auf dem Chart einzeichnen, Einstiegs-, Stop-Loss- und Take-Profit-Levels festlegen und die Handelsausführung auf der Grundlage des Musters automatisieren können.
Datenwissenschaft und ML (Teil 41): Mustererkennung mit YOLOv8 im Forex und den Aktienmärkten
Die Erkennung von Mustern auf den Finanzmärkten ist eine Herausforderung, denn dazu muss man sehen, was auf dem Chart zu sehen ist, und das ist in MQL5 aufgrund der Bildbeschränkungen schwierig zu bewerkstelligen. In diesem Artikel werden wir ein anständiges Modell in Python besprechen, das uns hilft, mit minimalem Aufwand Muster im Chart zu erkennen.
MQL5-Handelswerkzeuge (Teil 3): Aufbau eines Multi-Timeframe Scanner Dashboards für den strategischen Handel
In diesem Artikel bauen wir ein Multi-Timeframe-Scanner-Dashboard in MQL5, um Handelssignale in Echtzeit anzuzeigen. Wir planen eine interaktive Gitterschnittstelle, implementieren Signalberechnungen mit mehreren Indikatoren und fügen eine Schaltfläche zum Schließen hinzu. Der Artikel schließt mit Backtests und strategischen Handelsvorteilen
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 68): Verwendung von TRIX-Mustern und des Williams Percent Range mit einem Cosinus-Kernel-Netzwerk
Wir knüpfen an unseren letzten Artikel an, in dem wir das Indikatorpaar TRIX und Williams Percent Range vorstellten, und überlegen, wie dieses Indikatorpaar durch maschinelles Lernen erweitert werden kann. TRIX und Williams Percent sind ein Trend- und Unterstützungs-/Widerstandspaar, das sich gegenseitig ergänzt. Unser Ansatz des maschinellen Lernens verwendet ein neuronales Faltungsnetzwerk, das bei der Feinabstimmung der Prognosen dieses Indikatorpaares den Kosinus-Kernel in seine Architektur einbezieht. Wie immer wird dies in einer nutzerdefinierten Signalklassendatei durchgeführt, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.
Automatisieren von Handelsstrategien in MQL5 (Teil 19): Envelopes Trend Bounce Scalping - Handelsausführung und Risikomanagement (Teil II)
In diesem Artikel implementieren wir Handelsausführung und Risikomanagement für die Envelopes Trend Bounce Scalping Strategie in MQL5. Wir implementieren Auftragserteilung und Risikokontrollen wie Stop-Loss und Positionsgröße. Wir schließen mit Backtests und Optimierung, aufbauend auf den Grundlagen von Teil 18.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 67): Verwendung von TRIX-Mustern und der Williams Percent Range
Der Triple Exponential Moving Average Oscillator (TRIX) und der Williams Percentage Range Oscillator sind ein weiteres Paar von Indikatoren, die in Verbindung mit einem MQL5 Expert Advisor verwendet werden können. Dieses Indikatorpaar ist, wie die anderen, die wir kürzlich behandelt haben, ebenfalls komplementär, da der TRIX den Trend definiert, während die Williams Percent Range die Unterstützungs- und Widerstandsniveaus bestätigt. Wie immer verwenden wir den MQL5-Assistenten, um das Potenzial dieser beiden zu testen.
Automatisieren von Handelsstrategien in MQL5 (Teil 18): Envelopes Trend Bounce Scalping - Kerninfrastruktur und Signalgenerierung (Teil I)
In diesem Artikel bauen wir die Kerninfrastruktur für den Envelopes Trend Bounce Scalping Expert Advisor in MQL5. Wir initialisieren Envelopes und andere Indikatoren für die Signalerzeugung. Wir richten ein Backtest ein, um uns auf die Handelsausführung im nächsten Teil vorzubereiten.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 66): Verwendung von FrAMA-Mustern und des Force Index mit dem Punktprodukt-Kernel
Der FrAMA-Indikator und der Force Index Oscillator sind Trend- und Volumeninstrumente, die bei der Entwicklung eines Expert Advisors kombiniert werden können. Wir knüpfen an unseren letzten Artikel an, in dem dieses Paar vorgestellt wurde, und betrachten die Anwendbarkeit des maschinellen Lernens auf dieses Paar. Wir verwenden ein neuronales Faltungsnetzwerk, das den Punkt-Produkt-Kernel bei der Erstellung von Prognosen mit den Eingaben dieser Indikatoren verwendet. Dies geschieht in einer nutzerdefinierten Signalklassendatei, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.
Handel mit dem MQL5 Wirtschaftskalender (Teil 10): Bewegliches Dashboard und interaktive Hover-Effekte für eine reibungslose Nachrichten-Navigation
In diesem Artikel verbessern wir den MQL5-Wirtschaftskalender, indem wir ein bewegliches Dashboard einführen, mit dem wir die Schnittstelle für eine bessere Sichtbarkeit der Charts neu positionieren können. Wir implementieren Hover-Effekte für Schaltflächen, um die Interaktivität zu verbessern und eine nahtlose Navigation mit einer dynamisch positionierten Bildlaufleiste zu gewährleisten.
Datenwissenschaft und ML (Teil 40): Verwendung von Fibonacci-Retracements in Daten des maschinellen Lernens
Fibonacci-Retracements sind ein beliebtes Instrument der technischen Analyse, das Händlern hilft, potenzielle Umkehrzonen zu identifizieren. In diesem Artikel werden wir untersuchen, wie diese Retracement-Levels in Zielvariablen für maschinelle Lernmodelle umgewandelt werden können, damit diese den Markt mit Hilfe dieses leistungsstarken Tools besser verstehen können.
Handel mit dem MQL5 Wirtschaftskalender (Teil 9): Bessere Interaktion mit Nachrichten durch eine dynamische Bildlaufleiste und eine optimierte Anzeige
In diesem Artikel erweitern wir den MQL5-Wirtschaftskalender um eine dynamische Bildlaufleiste für eine intuitive Nachrichtennavigation. Wir sorgen für eine reibungslose Darstellung der Ereignisse und eine effiziente Aktualisierungen. Wir validieren die reaktionsschnelle Bildlaufleiste und das ausgefeilte Dashboard durch Tests.
Die Grenzen des maschinellen Lernens überwinden (Teil 2): Mangelnde Reproduzierbarkeit
Der Artikel geht der Frage nach, warum die Handelsergebnisse bei verschiedenen Brokern selbst bei Verwendung derselben Strategie und desselben Finanzsymbols aufgrund dezentraler Preisfestsetzung und Datenabweichungen erheblich voneinander abweichen können. Der Artikel hilft MQL5-Entwicklern zu verstehen, warum ihre Produkte auf dem MQL5-Marktplatz gemischte Bewertungen erhalten können, und fordert die Entwickler auf, ihre Ansätze auf bestimmte Makler zuzuschneiden, um transparente und reproduzierbare Ergebnisse zu gewährleisten. Dies könnte sich zu einer wichtigen bereichsgebundenen Best Practice entwickeln, die unserer Gemeinschaft gute Dienste leisten würde, wenn sie auf breiter Ebene übernommen würde.
Datenwissenschaft und ML (Teil 39): News + Künstliche Intelligenz, würden Sie darauf wetten?
Nachrichten treiben die Finanzmärkte an, insbesondere wichtige Veröffentlichungen wie die Non-Farm Payrolls (NFP, Beschäftigung außerhalb der Landwirtschaft). Wir alle haben schon erlebt, wie eine einzige Schlagzeile starke Kursbewegungen auslösen kann. In diesem Artikel befassen wir uns mit der leistungsstarken Schnittmenge von Nachrichtendaten und künstlicher Intelligenz.