Artikel über das Programmieren und Anwenden von Handelsrobotern in MQL5

Expert Advisors erfüllen unterschiedliche Funktionen auf der Plattform MetaTrader. Handelroboter können Finanzinstrumente rund um die Uhr verfolgen, Trades kopieren, Berichte erstellen und abschicken, sogar dem Händler eine speizielle auf seine Bestellung entwickelte grafische Benutzeroberfläche bieten.

In den Artikeln sind Programmierverfahren, mathematische Ideen für Datenverarbeitung, Ratschläge für Erstellung und Bestellung von Handelsrobotern.

Neuer Artikel
letzte | beste

Andere Klassen in der Bibliothek DoEasy (Teil 66): MQL5.com die Kollektionsklasse der Signale

In diesem Artikel werde ich die Kollektionsklasse der Signale des MQL5.com Signals-Dienstes mit den Funktionen zur Verwaltung von Signalen erstellen. Außerdem werde ich die Schnappschuss-Objektklasse

Neuronale Netze leicht gemacht (Teil 12): Dropout

Als nächsten Schritt beim Studium von neuronalen Netzwerken schlage ich vor, die Methoden zur Erhöhung der Konvergenz beim Training von neuronalen Netzwerken zu besprechen. Es gibt mehrere solcher

Preise in der DoEasy-Bibliothek (Teil 64): Markttiefe, Klassenobjekte für Schnappschüsse der Markttiefe und der Schnappschuss-Reihen

In diesem Artikel werde ich zwei Klassen erstellen (die Klassenobjekte des DOM-Schnappschusses und die der DOM-Schnappschuss-Reihe) und die Erstellung der DOM-Datenreihe testen

Der selbstanpassenden Algorithmus (Teil IV): Zusätzliche Funktionen und Tests

Ich fahre fort, den Algorithmus mit der minimal notwendigen Funktionalität zu entwickeln und die Ergebnisse zu testen. Die Rentabilität ist recht gering, aber die Artikel demonstrieren das Modell des

Nützliche und exotische Techniken für den automatisierten Handel

In diesem Artikel werde ich einige sehr interessante und nützliche Techniken für den automatisierten Handel vorstellen. Einige davon sind Ihnen vielleicht schon bekannt. Ich werde versuchen, die

Neuronale Netze leicht gemacht (Teil 11): Ein Blick auf GPT

Eines der fortschrittlichsten Modelle unter den derzeit existierenden neuronalen Netzen für Sprachen ist vielleicht GPT-3, dessen maximale Variante 175 Milliarden Parameter enthält. Natürlich werden

Preise in der DoEasy-Bibliothek (Teil 62): Aktualisieren der Tick-Serien in Echtzeit, Vorbereitung für die Arbeit mit Markttiefe

In diesem Artikel werde ich die Aktualisierung der Tick-Daten in Echtzeit implementieren und die Symbol-Objektklasse für die Arbeit mit Markttiefe (Depth of Market, DOM) vorbereiten (das DOM selbst

Entwicklung eines selbstanpassenden Algorithmus (Teil III): Verzicht auf Optimierung

Es ist unmöglich, einen wirklich stabilen Algorithmus zu erhalten, wenn wir die Optimierung auf Basis historischer Daten zur Auswahl der Parameter verwenden. Ein stabiler Algorithmus sollte wissen

Praktische Anwendung von Neuronalen Netzen im Handel (Teil 2). Computerbilder

Die Verwendung von Computerbilder ermöglicht das Training von Neuronalen Netzen auf der visuellen Darstellung des Kurscharts und der Indikatoren. Diese Methode ermöglicht breitere Operationen mit dem

Neuronale Netze leicht gemacht (Teil 10): Multi-Head Attention

Wir haben zuvor den Mechanismus der Self-Attention (Selbstaufmerksamkeit) in neuronalen Netzen besprochen. In der Praxis verwenden moderne neuronale Netzwerkarchitekturen mehrere parallele

Entwicklung eines selbstanpassenden Algorithmus (Teil II): Effizienzverbesserungen

In diesem Artikel werde ich die Entwicklung des Themas fortsetzen, indem ich die Flexibilität des zuvor erstellten Algorithmus verbessere. Der Algorithmus wurde stabiler mit einer Erhöhung der Anzahl

Brute-Force-Ansatz zur Mustersuche (Teil III): Neue Horizonte

Dieser Artikel bietet eine Fortsetzung des Brute-Force-Themas und führt neue Möglichkeiten der Marktanalyse in den Programmalgorithmus ein, wodurch die Geschwindigkeit der Analyse beschleunigt und die

Entwicklung eines selbstanpassenden Algorithmus (Teil I): Finden eines Grundmusters

In der kommenden Artikelserie werde ich die Entwicklung von selbstanpassenden Algorithmen unter Berücksichtigung der meisten Marktfaktoren demonstrieren, sowie zeigen, wie man diese Situationen

Zeitreihen in der Bibliothek DoEasy (Teil 59): Objekt zum Speichern der Daten eines Ticks

Ab diesem Artikel beginnen wir mit der Erstellung von Bibliotheksfunktionen für die Arbeit mit Preisdaten. Heute erstellen wir eine Objektklasse, die alle Preisdaten speichert, die mit einem weiteren

Neuronale Netze leicht gemacht (Teil 8): Attention-Mechanismen

In früheren Artikeln haben wir bereits verschiedene Möglichkeiten zur Organisation neuronaler Netze getestet. Wir haben auch Convolutional Networks (Faltungsnetze) besprochen, die aus

Zeitreihen in der Bibliothek DoEasy (Teil 58): Zeitreihen der Datenpuffer von Indikatoren

Zum Abschluss des Themas Arbeit mit Zeitreihen organisieren wir das Speichern, Suchen und Sortieren von Daten, die in Indikatorpuffern gespeichert sind, was die weitere Durchführung der Analyse auf

Brute-Force-Ansatz zur Mustersuche (Teil II): Immersion

In diesem Artikel werden wir die Diskussion über den Brute-Force-Ansatz fortsetzen. Ich werde versuchen, das Muster anhand der neuen, verbesserten Version meiner Anwendung besser zu erklären. Ich

Neuronale Netze leicht gemacht (Teil 7): Adaptive Optimierungsverfahren

In früheren Artikeln haben wir den stochastischen Gradientenabstieg verwendet, um ein neuronales Netzwerk mit der gleichen Lernrate für alle Neuronen innerhalb des Netzwerks zu trainieren. In diesem

Zeitreihen in der Bibliothek DoEasy (Teil 57): Das Datenobjekt der Indikatorpuffer

Wir entwickeln in diesem Artikel ein Objekt, das alle Daten eines Puffers für einen Indikator enthalten wird. Solche Objekte werden für die Speicherung serieller Daten von Indikatorpuffern benötigt

Neuronale Netze leicht gemacht (Teil 6): Experimentieren mit der Lernrate des neuronalen Netzwerks

Wir haben zuvor verschiedene Arten von neuronalen Netzen zusammen mit ihren Implementierungen betrachtet. In allen Fällen wurden die neuronalen Netze mit der Gradientenverfahren trainiert, für die wir

Zeitreihen in der Bibliothek DoEasy (Teil 56): Nutzerdefiniertes Indikatorobjekt, das die Daten von Indikatorobjekten aus der Kollektion holt

In dem Artikel wird das Erstellen des nutzerdefinierten Indikatorobjekts für die Verwendung in EAs erklärt. Lassen Sie uns die Bibliotheksklassen leicht verbessern und Methoden hinzufügen, um Daten

Neuronale Netze leicht gemacht (Teil 5): Parallele Berechnungen mit OpenCL

Wir haben bereits einige Arten von Implementierungen neuronaler Netze besprochen. In den betrachteten Netzwerken werden die gleichen Operationen für jedes Neuron wiederholt. Ein logischer weiterer

Neuronale Netze leicht gemacht (Teil 4): Rekurrente Netze

Wir setzen unser Studium der Welt der Neuronalen Netze fort. In diesem Artikel werden wir einen anderen Typ der Neuronalen Netzen betrachten, nämlich die Rekurrenten Netze. Dieser Typ wird für die

Brute-Force-Ansatz zur Mustersuche

In diesem Artikel werden wir nach Marktmustern suchen, Expert Advisors basierend auf den identifizierten Mustern erstellen und prüfen, wie lange diese Muster gültig bleiben, wenn sie überhaupt ihre

Neuronale Netze leicht gemacht (Teil 3): Convolutional Neurale Netzwerke

Als Fortsetzung des Themas Neuronale Netze schlage ich vor, Convolutional Neurale Netzwerke (faltende Neuronale Netzwerke) zu besprechen. Diese Art von Neuronalen Netzwerken wird in der Regel für die

Parallele Partikelschwarmoptimierung

Der Artikel beschreibt eine Methode zur schnellen Optimierung unter Verwendung des Partikelschwarm-Algorithmus. Er stellt auch die Implementierung der Methode in MQL vor, die sowohl im

Fortschrittliches Resampling und Auswahl von CatBoost-Modellen durch die Brute-Force-Methode

Dieser Artikel beschreibt einen der möglichen Ansätze zur Datentransformation mit dem Ziel, die Verallgemeinerbarkeit des Modells zu verbessern, und erörtert auch die Stichprobenziehung und Auswahl

Ein wissenschaftlicher Ansatz für die Entwicklung von Handelsalgorithmen

Der Artikel befasst sich mit der Methodik zur Entwicklung von Handelsalgorithmen, bei der ein konsistenter, wissenschaftlicher Ansatz zur Analyse möglicher Kursmuster und zur Erstellung von

Der Algorithmus CatBoost von Yandex für das maschinelle Lernen, Kenntnisse von Python- oder R sind nicht erforderlich

Der Artikel liefert den Code und die Beschreibung der wichtigsten Phasen des maschinellen Lernprozesses anhand eines konkreten Beispiels. Um das Modell zu entwickeln, benötigen Sie keine Kenntnisse

Nutzerdefinierte Symbole: Praktische Grundlagen

Der Artikel ist der programmatischen Generierung von nutzerdefinierten Symbolen gewidmet, die zur Demonstration einiger gängiger Methoden zur Anzeige von Ticks verwendet werden. Er beschreibt eine

Schnelle Werkzeuge für den manuellen Handel: Arbeiten mit offenen Positionen und Pending-Orders

In diesem Artikel werden wir die Möglichkeiten der Werkzeuge erweitern: Wir werden die Möglichkeit hinzufügen, Handelspositionen unter bestimmten Bedingungen zu schließen, und wir werden Tabellen zur

Berechnung mathematischer Ausdrücke (Teil 2). Parser nach Pratt und dem Shunting-yard-Algorithmus

In diesem Artikel betrachten wir die Prinzipien der Analyse und Auswertung mathematischer Ausdrücke unter Verwendung von Parsern, die auf der Operator-Priorität basieren. Wir werden Parser nach Pratt

Schnelle Werkzeuge für den manuellen Handel: Grundlegende Funktionsweise

Heutzutage wechseln viele Händler zu automatisierten Handelssystemen, die eine zusätzliche Einrichtung erfordern oder vollständig automatisiert und einsatzbereit sein können. Es gibt jedoch einen

Entwicklung eines plattformübergreifenden Grid-EAs: Testen eines Mehrwährungs-EA

Die Märkte brachen innerhalb eines Monats um mehr als 30% ein. Dies scheint der beste Zeitpunkt für die Prüfung von Expertenberatern mit Grid- und Martingal-Basis zu sein. Dieser Artikel ist eine

Anwendung von OLAP im Handel (Teil 4): Quantitative und visuelle Analyse der Testberichte

Der Artikel bietet grundlegende Werkzeuge für die OLAP-Analyse von Testberichten in Bezug auf einzelne Durchläufe und Optimierungsergebnisse. Das Werkzeug kann mit Dateien im Standardformat (tst und

Prognose von Zeitreihen (Teil 2): Least-Square Support-Vector Machine (LS-SVM)

Dieser Artikel befasst sich mit der Theorie und der praktischen Anwendung des Algorithmus zur Vorhersage von Zeitreihen, basierend auf der Support-Vektor-Methode. Er schlägt auch seine Implementierung

Prognose von Zeitreihen (Teil 1): Methode der Empirischen Modus Dekomposition (Empirical Mode Decomposition, EMD)

Dieser Artikel befasst sich mit der Theorie und der praktischen Anwendung des Algorithmus zur Vorhersage von Zeitreihen, basierend auf der empirischen Moduszerlegung. Er schlägt die

Anwendung von OLAP im Handel (Teil 3): Kursanalyse für die Entwicklung von Handelsstrategien

In diesem Artikel werden wir uns weiter mit der auf den Handel angewandten OLAP-Technologie befassen. Wir werden die in den ersten beiden Artikeln vorgestellten Funktionsweisen erweitern. Dieses Mal

Ökonometrischer Ansatz zur Ermittlung von Marktmustern: Autokorrelation, Heatmaps und Streudiagramme

Der Artikel stellt eine erweiterte Studie über jahreszeitliche Merkmale vor: Autokorrelations-Heatmaps und Streudiagramme. Der Zweck des Artikels ist es zu zeigen, dass das "Marktgedächtnis"

Erstellen eines Expert Advisors mit separaten Modulen

Bei der Entwicklung von Indikatoren, Expert Advisors und Skripten müssen Entwickler oft verschiedene Codeteile erstellen, die nicht direkt mit der Handelsstrategie zusammenhängen. In diesem Artikel