Aufbau des Kerzenmodells Trend Constraint (Teil 9): Expert Advisor für mehrere Strategien (II)
Die Zahl der Strategien, die in einen Expert Advisor integriert werden können, ist praktisch unbegrenzt. Jede zusätzliche Strategie erhöht jedoch die Komplexität des Algorithmus. Durch die Einbeziehung mehrerer Strategien kann sich ein Expert Advisor besser an unterschiedliche Marktbedingungen anpassen, was seine Rentabilität erhöhen kann. Heute werden wir uns mit der Implementierung von MQL5 für eine der bekannten, von Richard Donchian entwickelten Strategien befassen, da wir die Funktionalität unseres Trend Constraint Expert weiter verbessern wollen.
Selbstoptimierender Expert Advisor mit MQL5 und Python (Teil VI): Die Vorteile des tiefen doppelten Abstiegs nutzen
Das traditionelle maschinelle Lernen lehrt die Praktiker, darauf zu achten, dass ihre Modelle nicht übermäßig angepasst werden. Diese Ideologie wird jedoch durch neue Erkenntnisse in Frage gestellt, die von fleißigen Forschern aus Harvard veröffentlicht wurden, die herausgefunden haben, dass das, was als Überanpassung erscheint, unter Umständen das Ergebnis einer vorzeitigen Beendigung Ihrer Trainingsverfahren ist. Wir werden zeigen, wie wir die in der Forschungsarbeit veröffentlichten Ideen nutzen können, um unseren Einsatz von KI bei der Prognose von Ergebnissen zu verbessern.
Entwicklung von Analyseinstrumenten für Preisentwicklungen (Teil 1): Der Chart-Projektor
Dieses Projekt zielt darauf ab, den MQL5-Algorithmus zu nutzen, um einen umfassenden Satz von Analyseinstrumenten für MetaTrader 5 zu entwickeln. Diese Instrumente - von Skripten und Indikatoren bis hin zu KI-Modellen und Expert Advisor - automatisieren den Marktanalyseprozess. Mitunter wird diese Entwicklung zu Instrumenten führen, die in der Lage sind, fortgeschrittene Analysen ohne menschliches Zutun durchzuführen und die Ergebnisse auf geeigneten Plattformen vorherzusagen. Keine Gelegenheit wird jemals verpasst werden. Erkunden Sie mit mir den Prozess des Aufbaus einer robusten, maßgeschneiderten Marktanalyse-Instrumentenkasten. Wir werden mit der Entwicklung eines einfachen MQL5-Programms beginnen, das ich Chart-Projektor genannt habe.
Integration von MQL5 mit Datenverarbeitungspaketen (Teil 3): Verbesserte Datenvisualisierung
In diesem Artikel werden wir eine erweiterte Datenvisualisierung durchführen, indem wir über einfache Charts hinausgehen und Funktionen wie Interaktivität, geschichtete Daten und dynamische Elemente einbeziehen, die es Händlern ermöglichen, Trends, Muster und Korrelationen effektiver zu untersuchen.
Erstellen eines Handelsadministrator-Panels in MQL5 Teil IV: Login-Sicherheitsschicht
Stellen Sie sich vor, ein bösartiger Akteur dringt in den Raum des Handelsadministrator ein und verschafft sich Zugang zu den Computern und dem Admin-Panel, über das Millionen von Händlern weltweit wertvolle Informationen erhalten. Ein solches Eindringen könnte katastrophale Folgen haben, z. B. das unbefugte Versenden irreführender Nachrichten oder zufällige Klicks auf Schaltflächen, die unbeabsichtigte Aktionen auslösen. In dieser Diskussion werden wir die Sicherheitsmaßnahmen in MQL5 und die neuen Sicherheitsfunktionen, die wir in unserem Admin-Panel zum Schutz vor diesen Bedrohungen implementiert haben, untersuchen. Durch die Verbesserung unserer Sicherheitsprotokolle wollen wir unsere Kommunikationskanäle schützen und das Vertrauen unserer weltweiten Handelsgemeinschaft erhalten. Weitere Informationen finden Sie in diesem Artikel.
MQL5 Handels-Toolkit (Teil 3): Entwicklung einer EX5-Bibliothek zur Verwaltung schwebenden Aufträge
Lernen Sie, wie Sie eine umfassende EX5-Bibliothek für schwebende Aufträge in Ihrem MQL5-Code oder Ihren Projekten entwickeln und implementieren. Dieser Artikel zeigt Ihnen, wie Sie eine umfangreiche EX5-Bibliothek für die Verwaltung schwebender Aufträge erstellen können, und führt Sie durch den Import und die Implementierung dieser Bibliothek, indem er ein Handels-Panel oder eine grafische Nutzeroberfläche (GUI) erstellt. Das Expert Advisor-Order-Panel ermöglicht es den Nutzern, schwebende Aufträge, die mit einer bestimmten magischen Zahl verknüpft sind, direkt über die grafische Oberfläche im Chartfenster zu öffnen, zu überwachen und zu löschen.
Nachbarschaftsübergreifende Suche (ANS)
Der Artikel zeigt das Potenzial des ANS-Algorithmus als einen wichtigen Schritt in der Entwicklung flexibler und intelligenter Optimierungsmethoden, die die Besonderheiten des Problems und die Dynamik der Umgebung im Suchraum berücksichtigen können.
Der Body im Connexus (Teil 4): Hinzufügen des HTTP-Hauptteils
In diesem Artikel werden wir das Konzept des Body in HTTP-Anfragen untersuchen, das für das Senden von Daten wie JSON und Klartext unerlässlich ist. Wir besprechen und erklären, wie man es richtig mit den entsprechenden Kopfzeilen verwendet. Wir haben auch die Klasse ChttpBody eingeführt, die Teil der Connexus-Bibliothek ist und die Arbeit mit dem Body von Anfragen vereinfacht.
Algorithmus zur chemischen Reaktionsoptimierung (CRO) (Teil II): Zusammenstellung und Ergebnisse
Im zweiten Teil werden wir die chemischen Operatoren in einem einzigen Algorithmus zusammenfassen und eine detaillierte Analyse seiner Ergebnisse präsentieren. Wir wollen herausfinden, wie die Methode der chemischen Reaktionsoptimierung (CRO) mit der Lösung komplexer Probleme bei Testfunktionen zurechtkommt.
Entwicklung eines Replay Systems (Teil 54): Die Geburt des ersten Moduls
In diesem Artikel werden wir uns ansehen, wie wir das erste einer Reihe von wirklich funktionalen Modulen für die Verwendung im Replay-/Simulatorsystem zusammenstellen, die auch für andere Zwecke geeignet sein werden. Die Rede ist vom Mausmodul.
Erstellen eines Administrator-Panels für den Handel in MQL5 (Teil III): Erweiterung der installierten Klassen für die Theme-Verwaltung (II)
In dieser Diskussion werden wir die bestehende Dialogbibliothek sorgfältig erweitern, um die Logik der Verwaltung der Farbmodi (Theme) zu integrieren. Darüber hinaus werden wir Methoden für den Theme-Wechsel in die Klassen CDialog, CEdit und CButton integrieren, die in unserem Admin-Panel-Projekt verwendet werden. Lesen Sie weiter für weitere aufschlussreiche Perspektiven.
Ordinale Kodierung für Nominalvariablen
In diesem Artikel erörtern und demonstrieren wir, wie man nominale Prädiktoren in numerische Formate umwandelt, die für Algorithmen des maschinellen Lernens geeignet sind, und zwar sowohl mit Python als auch mit MQL5.
Selbstoptimierender Expert Advisor mit MQL5 und Python (Teil V): Tiefe Markov-Modelle
In dieser Diskussion werden wir eine einfache Markov-Kette auf einen RSI-Indikator anwenden, um zu beobachten, wie sich der Preis verhält, nachdem der Indikator wichtige Niveaus durchlaufen hat. Wir kamen zu dem Schluss, dass die stärksten Kauf- und Verkaufssignale für das NZDJPY-Paar entstehen, wenn der RSI im Bereich von 11-20 bzw. 71-80 liegt. Wir werden Ihnen zeigen, wie Sie Ihre Daten manipulieren können, um optimale Handelsstrategien zu erstellen, die direkt aus den vorhandenen Daten gelernt werden. Darüber hinaus wird demonstriert, wie ein tiefes neuronales Netz so trainiert werden kann, dass es lernt, die Übergangsmatrix optimal zu nutzen.
Der Header im Connexus (Teil 3): Die Verwendung von HTTP-Headern für Anfragen beherrschen
Wir entwickeln die Connexus-Bibliothek weiter. In diesem Kapitel wird das Konzept der Header im HTTP-Protokoll erläutert. Es wird erklärt, was sie sind, wozu sie dienen und wie man sie in Anfragen verwendet. Wir behandeln die wichtigsten Header, die bei der Kommunikation mit APIs verwendet werden, und zeigen praktische Beispiele, wie sie in der Bibliothek konfiguriert werden können.
Klassische Strategien neu interpretieren (Teil IX): Analyse mehrerer Zeitrahmen (II)
In der heutigen Diskussion untersuchen wir die Strategie der Analyse mehrerer Zeitrahmen, um zu erfahren, in welchem Zeitrahmen unser KI-Modell am besten abschneidet. Unsere Analyse führt uns zu dem Schluss, dass die monatlichen und stündlichen Zeitrahmen Modelle mit relativ niedrigen Fehlerquoten für das EURUSD-Paar ergeben. Wir haben dies zu unserem Vorteil genutzt und einen Handelsalgorithmus entwickelt, der KI-Prognosen auf dem monatlichen Zeitrahmen erstellt und seine Handelsgeschäfte auf dem stündlichen Zeitrahmen ausführt.
Wie man ein Handelsjournal mit MetaTrader und Google-Tabellen erstellt
Erstellen eines Handelsjournals mit MetaTrader und Google-Tabellen! Sie lernen, wie Sie Ihre Handelsdaten über HTTP POST synchronisieren und über HTTP-Anfragen abrufen können. Am Ende haben Sie ein Handelsjournal, das Ihnen hilft, Ihre Geschäfte effektiv und effizient zu überblicken.
Verschaffen Sie sich einen Vorteil gegenüber jedem Markt (Teil V): FRED EURUSD Alternative Daten
In der heutigen Diskussion haben wir alternative tägliche Daten der St. Louis Federal Reserve zum Broad US-Dollar Index und eine Reihe anderer makroökonomischer Indikatoren verwendet, um den zukünftigen EURUSD-Wechselkurs vorherzusagen. Obwohl die Daten nahezu perfekt zu korrelieren scheinen, konnten wir leider keine wesentlichen Verbesserungen der Modellgenauigkeit feststellen, was uns möglicherweise zu der Annahme veranlasst, dass Anleger stattdessen besser auf gewöhnliche Marktnotierungen zurückgreifen sollten.
Beispiel eines neuen Indikators und eines Conditional LSTM
Dieser Artikel befasst sich mit der Entwicklung eines Expert Advisors (EA) für den automatisierten Handel, der technische Analyse mit Deep Learning-Vorhersagen kombiniert.
Vom Neuling zum Experten: Umfassende Fehlersuche in MQL5
Die Problemlösung kann eine prägnante Routine für die Beherrschung komplexer Fertigkeiten, wie die Programmierung in MQL5, schaffen. Dieser Ansatz ermöglicht es Ihnen, sich auf die Lösung von Problemen zu konzentrieren und gleichzeitig Ihre Fähigkeiten zu entwickeln. Je mehr Probleme Sie lösen, desto mehr fortgeschrittenes Fachwissen erwerben Sie. Ich persönlich glaube, dass die Fehlersuche der effektivste Weg ist, das Programmieren zu beherrschen. Heute werden wir den Prozess der Codebereinigung durchgehen und die besten Techniken besprechen, um ein unordentliches Programm in ein sauberes, funktionales Programm zu verwandeln. Lesen Sie diesen Artikel und gewinnen Sie wertvolle Erkenntnisse.
Entwicklung eines Replay Systems (Teil 53): Die Dinge werden kompliziert (V)
In diesem Artikel behandeln wir ein wichtiges Thema, das nur wenige Menschen verstehen: Nutzerdefinierte Ereignisse. Gefahren. Vor- und Nachteile dieser Elemente. Dieses Thema ist der Schlüssel für diejenigen, die professionelle Programmierer in MQL5 oder einer anderen Sprache werden wollen. Hier werden wir uns auf MQL5 und MetaTrader 5 konzentrieren.
Entwicklung eines Replay Systems (Teil 52): Die Dinge werden kompliziert (IV)
In diesem Artikel werden wir den Mauszeiger ändern, um die Interaktion mit dem Kontrollindikator zu ermöglichen und einen zuverlässigen und stabilen Betrieb zu gewährleisten.
HTTP und Connexus (Teil 2): Verstehen der HTTP-Architektur und des Bibliotheksdesigns
Dieser Artikel befasst sich mit den Grundlagen des HTTP-Protokolls und behandelt die wichtigsten Methoden (GET, POST, PUT, DELETE), Statuscodes und die Struktur von URLs. Darüber hinaus wird der Beginn des Aufbaus der Conexus-Bibliothek mit den Klassen CQueryParam und CURL vorgestellt, die die Manipulation von URLs und Abfrageparametern in HTTP-Anfragen erleichtern.
Verschaffen Sie sich einen Vorteil auf jedem Markt (Teil IV): CBOE: Volatilitätsindizes von Euro und Gold
Wir werden alternative, von der Chicago Board Of Options Exchange (CBOE) kuratierte Daten analysieren, um die Genauigkeit unserer tiefen neuronalen Netze bei der Vorhersage des XAUEUR-Symbols zu verbessern.
Selbstoptimierender Expert Advisor mit MQL5 und Python (Teil IV): Stacking-Modelle
Heute werden wir Ihnen zeigen, wie Sie KI-gestützte Handelsanwendungen entwickeln können, die aus ihren eigenen Fehlern lernen. Wir werden eine Technik demonstrieren, die als Stacking bekannt ist und bei der wir 2 Modelle verwenden, um eine Vorhersage zu treffen. Das erste Modell ist in der Regel ein schwächerer Lerner, und das zweite Modell ist in der Regel ein leistungsfähigeres Modell, das die Residuen unseres schwächeren Lerners lernt. Unser Ziel ist es, ein Ensemble von Modellen zu erstellen, um hoffentlich eine höhere Genauigkeit zu erreichen.
Analyse mehrerer Symbole mit Python und MQL5 (Teil I): NASDAQ für Hersteller von integrierten Schaltungen
Diskutieren Sie mit uns, wie Sie KI nutzen können, um Ihre Positionsgrößen und Ordermengen zu optimieren und so die Rendite Ihres Portfolios zu maximieren. Wir zeigen Ihnen, wie Sie algorithmisch ein optimales Portfolio ermitteln und Ihr Portfolio an Ihre Renditeerwartungen oder Ihre Risikotoleranz anpassen können. In dieser Diskussion werden wir die SciPy-Bibliothek und die MQL5-Sprache verwenden, um ein optimales und diversifiziertes Portfolio mit allen uns zur Verfügung stehenden Daten zu erstellen.
Neuinterpretation klassischer Strategien in MQL5 (Teil III): Prognose des FTSE 100
In dieser Artikelserie werden wir uns bekannte Handelsstrategien noch einmal ansehen und untersuchen, ob wir diese Strategien mithilfe von KI verbessern können. Im heutigen Artikel werden wir uns mit dem FTSE 100 befassen und versuchen, den Index anhand eines Teils der Einzelwerte, aus denen er sich zusammensetzt, zu prognostizieren.
Scalping Orderflow für MQL5
Dieser MetaTrader 5 Expert Advisor implementiert die Strategie für ein Scalping-OrderFlow mit fortschrittlichem Risikomanagement. Es verwendet mehrere technische Indikatoren, um Handelsmöglichkeiten auf der Grundlage von Ungleichgewichten im Auftragsfluss zu identifizieren. Das Backtesting zeigt die potenzielle Rentabilität, macht aber auch deutlich, dass weitere Optimierungen erforderlich sind, insbesondere beim Risikomanagement und beim Verhältnis der Handelsergebnisse. Es ist für erfahrene Händler geeignet und muss vor dem Live-Einsatz gründlich getestet und verstanden werden.
Die Handelsgeschäfte direkt auf dem Chart beurteilen, statt in der Handelshistorie unterzugehen
In diesem Artikel werden wir ein einfaches Tool für die bequeme Anzeige von Positionen und Handelsgeschäften direkt auf dem Chart mit Schlüsselnavigation erstellen. So können die Händler einzelne Handelsgeschäfte visuell prüfen und erhalten alle Informationen über die Handelsergebnisse direkt vor Ort.
Wichtigste Änderungen des Algorithmus für die künstliche kooperative Suche (ACSm)
Hier werden wir die Entwicklung des ACS-Algorithmus betrachten: drei Änderungen zur Verbesserung der Konvergenzeigenschaften und der Effizienz des Algorithmus. Umwandlung eines der führenden Optimierungsalgorithmen. Von Matrixmodifikationen bis hin zu revolutionären Ansätzen zur Bevölkerungsbildung.
Entwicklung eines Replay Systems (Teil 51): Die Dinge werden kompliziert (III)
In diesem Artikel werden wir uns mit einem der schwierigsten Probleme im Bereich der MQL5-Programmierung befassen: wie man eine Chart-ID korrekt erhält und warum Objekte manchmal nicht im Chart gezeichnet werden. Die hier vorgestellten Materialien sind ausschließlich für didaktische Zwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
Neuronale Netze leicht gemacht (Teil 91): Vorhersage durch Frequenzbereiche (Frequency Domain Forecasting, FreDF)
Wir fahren fort mit der Analyse und Vorhersage von Zeitreihen im Frequenzbereich. In diesem Artikel machen wir uns mit einer neuen Methode zur Vorhersage von Daten im Frequenzbereich vertraut, die zu vielen der bisher untersuchten Algorithmen hinzugefügt werden kann.
PSAR, Heiken Ashi und Deep Learning gemeinsam für den Handel nutzen
Dieses Projekt erforscht die Verschmelzung von Deep Learning und technischer Analyse, um Handelsstrategien im Forex-Bereich zu testen. Für schnelle Experimente wird ein Python-Skript verwendet, das ein ONNX-Modell neben traditionellen Indikatoren wie PSAR, SMA und RSI einsetzt, um die Entwicklung des EUR/USD vorherzusagen. Ein MetaTrader 5-Skript bringt diese Strategie dann in eine Live-Umgebung und nutzt historische Daten und technische Analysen, um fundierte Handelsentscheidungen zu treffen. Die Backtesting-Ergebnisse deuten auf einen vorsichtigen, aber konsequenten Ansatz hin, bei dem der Schwerpunkt eher auf Risikomanagement und stetigem Wachstum als auf aggressivem Gewinnstreben liegt.
Wie man die automatische Optimierung in MQL5 Expert Advisors implementiert
Schritt für Schritt Anleitung zur automatischen Optimierung in MQL5 für Expert Advisors. Wir werden eine robuste Optimierungslogik, bewährte Verfahren für die Parameterauswahl und die Rekonstruktion von Strategien mit Backtesting behandeln. Darüber hinaus werden übergeordnete Methoden wie die Walk-Forward-Optimierung erörtert, um Ihren Handelsansatz zu verbessern.
Beispiel für CNA (Causality Network Analysis), SMOC (Stochastic Model Optimal Control) und Nash Game Theory mit Deep Learning
Wir werden Deep Learning zu den drei Beispielen hinzufügen, die in früheren Artikeln veröffentlicht wurden, und die Ergebnisse mit den vorherigen vergleichen. Das Ziel ist es, zu lernen, wie man DL zu anderen EAs hinzufügt.
Einführung in Connexus (Teil 1): Wie verwendet man die WebRequest-Funktion?
Dieser Artikel ist der Beginn einer Reihe von Entwicklungen für eine Bibliothek namens „Connexus“, die HTTP-Anfragen mit MQL5 erleichtern soll. Das Ziel dieses Projekts ist es, dem Endnutzer diese Möglichkeit zu bieten und zu zeigen, wie man diese Hilfsbibliothek verwendet. Ich wollte sie so einfach wie möglich gestalten, um das Studium zu erleichtern und die Möglichkeit für künftige Entwicklungen zu schaffen.
Selbstoptimierender Expert Advisor mit MQL5 und Python (Teil III): Den Boom-1000-Algorithmus knacken
In dieser Artikelserie erörtern wir, wie wir Expert Advisors entwickeln können, die sich selbständig an dynamische Marktbedingungen anpassen. Im heutigen Artikel werden wir versuchen, ein tiefes neuronales Netz auf die synthetischen Märkte von Derivativen abzustimmen.
Neuinterpretation klassischer Strategien in MQL5 (Teil II): FTSE100 und britische Staatsanleihen
In dieser Artikelserie untersuchen wir beliebte Handelsstrategien und versuchen, sie mithilfe von KI zu verbessern. Im heutigen Artikel greifen wir die klassische Handelsstrategie wieder auf, die auf der Beziehung zwischen dem Aktien- und dem Anleihemarkt basiert.
Erstellen eines Administrator-Panels für den Handel in MQL5 (Teil III): Verbesserung der grafischen Nutzeroberfläche mit visuellem Styling (I)
In diesem Artikel werden wir uns auf die visuelle Gestaltung der grafischen Nutzeroberfläche (GUI) unseres Trading Administrator Panels mit MQL5 konzentrieren. Wir werden verschiedene in MQL5 verfügbare Techniken und Funktionen erkunden, die eine Anpassung und Optimierung der Schnittstelle ermöglichen, um sicherzustellen, dass sie den Bedürfnissen der Händler entspricht und gleichzeitig eine attraktive Ästhetik beibehält.
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil II): Verbesserte Reaktionsfähigkeit und schnelle Nachrichtenübermittlung
In diesem Artikel werden wir die Reaktionsfähigkeit des Admin Panels verbessern, das wir zuvor erstellt haben. Darüber hinaus werden wir die Bedeutung der schnellen Nachrichtenübermittlung im Zusammenhang mit Handelssignalen untersuchen.
Algorithmus für die künstliche, kooperative Suche (Artificial Cooperative Search, ACS)
Die künstliche, kooperative Suche (Artificial Cooperative Search, ACS) ist eine innovative Methode, bei der eine binäre Matrix und mehrere dynamische Populationen auf der Grundlage von wechselseitigen Beziehungen und Kooperation verwendet werden, um schnell und genau optimale Lösungen zu finden. Der einzigartige Ansatz von ACS in Bezug auf Räuber und Beute ermöglicht es, hervorragende Ergebnisse bei numerischen Optimierungsproblemen zu erzielen.