Neuinterpretation klassischer Strategien in MQL5 (Teil III): Prognose des FTSE 100
In dieser Artikelserie werden wir uns bekannte Handelsstrategien noch einmal ansehen und untersuchen, ob wir diese Strategien mithilfe von KI verbessern können. Im heutigen Artikel werden wir uns mit dem FTSE 100 befassen und versuchen, den Index anhand eines Teils der Einzelwerte, aus denen er sich zusammensetzt, zu prognostizieren.
DoEasy. Steuerung (Teil 13): Optimierung der Interaktion von WinForms-Objekten mit der Maus, Beginn der Entwicklung des WinForms-Objekts TabControl
In diesem Artikel werde ich den Umgang mit dem Aussehen von WinForms-Objekte nach dem Bewegen des Mauszeigers weg von dem Objekt, sowie die Entwicklung der TabControl WinForms-Objekt korrigieren und optimieren.
Wichtigste Änderungen des Algorithmus für die künstliche kooperative Suche (ACSm)
Hier werden wir die Entwicklung des ACS-Algorithmus betrachten: drei Änderungen zur Verbesserung der Konvergenzeigenschaften und der Effizienz des Algorithmus. Umwandlung eines der führenden Optimierungsalgorithmen. Von Matrixmodifikationen bis hin zu revolutionären Ansätzen zur Bevölkerungsbildung.
Aufbau des Kerzenmodells Trend Constraint (Teil 9): Expert Advisor für mehrere Strategien (III)
Willkommen zum dritten Teil unserer Trendserie! Heute werden wir uns mit der Verwendung von Divergenzen als Strategie zur Identifizierung optimaler Einstiegspunkte innerhalb des vorherrschenden Tagestrends beschäftigen. Wir werden auch einen nutzerdefinierten Gewinnsicherungsmechanismus einführen, der einem Trailing-Stop-Loss ähnelt, aber einzigartige Verbesserungen aufweist. Darüber hinaus werden wir den Experten Trend Constraint zu einer fortschrittlicheren Version ausbauen und eine neue Handelsausführungsbedingung einführen, die die bestehenden Bedingungen ergänzt. Im weiteren Verlauf werden wir die praktische Anwendung von MQL5 bei der Entwicklung von Algorithmen weiter erforschen und Ihnen tiefer gehende Einblicke und umsetzbare Techniken vermitteln.
Der Optimierungsalgorithmus Brain Storm (Teil II): Multimodalität
Im zweiten Teil des Artikels werden wir uns mit der praktischen Implementierung des BSO-Algorithmus befassen, Tests mit Testfunktionen durchführen und die Effizienz von BSO mit anderen Optimierungsmethoden vergleichen.
Developing an MQL5 RL agent with RestAPI integration (Part 2): MQL5 functions for HTTP interaction with the tic-tac-toe game REST API
In this article we will talk about how MQL5 can interact with Python and FastAPI, using HTTP calls in MQL5 to interact with the tic-tac-toe game in Python. The article discusses the creation of an API using FastAPI for this integration and provides a test script in MQL5, highlighting the versatility of MQL5, the simplicity of Python, and the effectiveness of FastAPI in connecting different technologies to create innovative solutions.
Hybridisierung von Populationsalgorithmen. Sequentielle und parallele Strukturen
Hier tauchen wir in die Welt der Hybridisierung von Optimierungsalgorithmen ein, indem wir uns drei Haupttypen ansehen: Strategiemischung, sequentielle und parallele Hybridisierung. Wir werden eine Reihe von Experimenten durchführen, in denen wir die relevanten Optimierungsalgorithmen kombinieren und testen.
DoEasy. Dienstfunktionen (Teil 3): Das Muster der „Outside Bar“
In diesem Artikel werden wir das Preismuster der „Outside Bar“ in der DoEasy-Bibliothek entwickeln und die Methoden des Zugriffs auf das Preismuster-Management optimieren. Außerdem werden wir Fehler und Unzulänglichkeiten beheben, die bei den Bibliothekstests festgestellt wurden.
Expert Advisor auf der Grundlage des universellen MLP-Approximators
In diesem Artikel wird eine einfache und zugängliche Methode zur Verwendung eines neuronalen Netzwerks in einem Handels-EA vorgestellt, für die keine tiefgreifenden Kenntnisse des maschinellen Lernens erforderlich sind. Die Methode eliminiert die Zielfunktionsnormalisierung und überwindet die Probleme der „Gewichtsexplosion“ und des „Netzwerkstaus“, indem sie intuitives Training und visuelle Kontrolle der Ergebnisse bietet.
Entwicklung eines Expert Advisors in MQL5 für Ausbrüche nach kalenderbasierten Nachrichtenereignissen
Die Volatilität erreicht ihren Höhepunkt in der Regel in der Nähe von Ereignissen mit hohem Nachrichtenwert, wodurch sich erhebliche Ausbruchschancen ergeben. In diesem Artikel werden wir den Umsetzungsprozess einer kalenderbasierten Ausbruch-Strategie skizzieren. Wir werden alles von der Erstellung einer Klasse zur Interpretation und Speicherung von Kalenderdaten über die Entwicklung realistischer Backtests mit diesen Daten bis hin zur Implementierung von Ausführungscode für den Live-Handel behandeln.
Klassische Strategien neu interpretieren (Teil IX): Analyse mehrerer Zeitrahmen (II)
In der heutigen Diskussion untersuchen wir die Strategie der Analyse mehrerer Zeitrahmen, um zu erfahren, in welchem Zeitrahmen unser KI-Modell am besten abschneidet. Unsere Analyse führt uns zu dem Schluss, dass die monatlichen und stündlichen Zeitrahmen Modelle mit relativ niedrigen Fehlerquoten für das EURUSD-Paar ergeben. Wir haben dies zu unserem Vorteil genutzt und einen Handelsalgorithmus entwickelt, der KI-Prognosen auf dem monatlichen Zeitrahmen erstellt und seine Handelsgeschäfte auf dem stündlichen Zeitrahmen ausführt.
Der Indikator Market Profile
In diesem Artikel werden wir den Indikator Market Profile besprechen. Wir werden herausfinden, was sich hinter diesem Namen verbirgt, versuchen, seine Funktionsweise zu verstehen und einen Blick auf seine Terminalversion (MarketProfile) zu werfen.
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 5): Volatilitätsnavigator EA
Die Marktrichtung zu bestimmen kann einfach sein, aber zu wissen, wann man einsteigen sollte, kann eine Herausforderung sein. Im Rahmen der Serie „Entwicklung eines Toolkit zur Analyse von Preisaktionen" freue ich mich, ein weiteres Tool vorzustellen, das Einstiegspunkte, Take-Profit-Levels und Stop-Loss-Platzierungen bietet. Um dies zu erreichen, haben wir die Programmiersprache MQL5 verwendet. In diesem Artikel wollen wir die einzelnen Schritte näher erläutern.
Alternative Risiko-Ertrags-Metriken in MQL5
In diesem Artikel stellen wir die Umsetzung mehrere Risikorenditekennzahlen vor, die als Alternativen zur Sharpe-Ratio angepriesen werden, und untersuchen hypothetische Aktienkurven, um ihre Eigenschaften zu analysieren.
Einführung in Connexus (Teil 1): Wie verwendet man die WebRequest-Funktion?
Dieser Artikel ist der Beginn einer Reihe von Entwicklungen für eine Bibliothek namens „Connexus“, die HTTP-Anfragen mit MQL5 erleichtern soll. Das Ziel dieses Projekts ist es, dem Endnutzer diese Möglichkeit zu bieten und zu zeigen, wie man diese Hilfsbibliothek verwendet. Ich wollte sie so einfach wie möglich gestalten, um das Studium zu erleichtern und die Möglichkeit für künftige Entwicklungen zu schaffen.
Erstellen von selbstoptimierenden Expert Advisor in MQL5 (Teil 6): Selbstanpassende Handelsregeln (II)
Dieser Artikel befasst sich mit der Optimierung der RSI-Werte und -Perioden für bessere Handelssignale. Wir stellen Methoden zur Schätzung optimaler RSI-Werte vor und automatisieren die Periodenauswahl mithilfe von Rastersuche und statistischen Modellen. Schließlich implementieren wir die Lösung in MQL5 und setzen Python für die Analyse ein. Unser Ansatz ist pragmatisch und geradlinig, um Ihnen zu helfen, potenziell komplizierte Probleme auf einfache Weise zu lösen.
Von der Grundstufe bis zur Mittelstufe: Das Array (I)
Dieser Artikel stellt einen Übergang zwischen dem bisher Erörterten und einer neuen Phase der Forschung dar. Um diesen Artikel zu verstehen, müssen Sie die vorherigen Artikel lesen. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
Klassische Strategien neu interpretieren (Teil VIII): Währungsmärkte und Edelmetalle zum USDCAD
In dieser Artikelserie nehmen wir bekannte Handelsstrategien unter die Lupe, um zu sehen, ob wir sie mithilfe von KI verbessern können. Testen Sie mit uns in der heutigen Diskussion, ob es eine zuverlässige Beziehung zwischen Edelmetallen und Währungen gibt.
Selbstoptimierende Expert Advisors in MQL5 (Teil 9): Kreuzen zweier gleitender Durchschnitte
Dieser Artikel beschreibt den Aufbau einer Strategie des Kreuzens zweier gleitender Durchschnitte, die Signale aus einem höheren Zeitrahmen (D1) verwendet, um Einstiege auf einem niedrigeren Zeitrahmen (M15) zu steuern, wobei die Stop-Loss-Niveaus aus einem Zeitrahmen mit mittlerem Risiko (H4) berechnet werden. Es werden Systemkonstanten, nutzerdefinierte Enumerationen und Logik für trendfolgende und zum Mittelwert rückkehrende Modi eingeführt, wobei der Schwerpunkt auf Modularität und künftige Optimierung mithilfe eines genetischen Algorithmus liegt. Der Ansatz ermöglicht flexible Einstiegs- und Ausstiegsbedingungen und zielt darauf ab, die Signalverzögerung zu verringern und das Handels-Timing zu verbessern, indem Einstiegsmöglichkeiten im unteren Zeitrahmen mit Trends im oberen Zeitrahmen abgestimmt werden.
Die Gruppenmethode der Datenverarbeitung: Implementierung des mehrschichtigen iterativen Algorithmus in MQL5
In diesem Artikel beschreiben wir die Implementierung des mehrschichtigen iterativen Algorithmus der Gruppenmethode der Datenverarbeitung in MQL5.
Implementierung des kryptografischen SHA-256-Algorithmus von Grund auf in MQL5
Die Entwicklung DLL-freier Integrationen von Kryptowährungsbörsen war lange Zeit eine Herausforderung, aber diese Lösung bietet ein komplettes Framework für die direkte Marktanbindung.
MQL5 Handels-Toolkit (Teil 6): Erweitern der Bibliothek der History Management EX5 mit den Funktionen für den zuletzt ausgelösten, schwebenden Auftrag
Lernen Sie, wie Sie ein EX5-Modul mit exportierbaren Funktionen erstellen, die reibungslos Daten für den zuletzt ausgelösten, schwebenden Auftrag abfragen und speichern. In dieser umfassenden Schritt-für-Schritt-Anleitung werden wir die Bibliothek von History Management EX5 durch die Entwicklung dedizierter und unterteilter Funktionen erweitern, um wesentliche Eigenschaften des letzten ausgelösten, schwebenden Auftrags abzurufen. Zu diesen Eigenschaften gehören die Auftragsart, die Einrichtungszeit, die Ausführungszeit, die Art der Zuweisung und andere wichtige Details, die für eine effektive Verwaltung und Analyse des Handelsverlaufs ausstehender Aufträge erforderlich sind.
MQL5 Handels-Toolkit (Teil 7): Erweitern der History Management EX5-Bibliothek um die Funktionen für den zuletzt stornierten, schwebenden Auftrag
Erfahren Sie, wie Sie das letzte Modul in der Bibliothek des History Manager EX5 erstellen, wobei Sie sich auf die Funktionen konzentrieren, die für die Bearbeitung des zuletzt stornierten, schwebenden Auftrags verantwortlich sind. Damit haben Sie die Möglichkeit, wichtige Details zu stornierten offenen Aufträgen mit MQL5 effizient abzurufen und zu speichern.
Entwicklung eines Replay Systems (Teil 35): Anpassungen vornehmen (I)
Bevor wir weitermachen können, müssen wir einige Dinge in Ordnung bringen. Dabei handelt es sich nicht um die notwendigen Korrekturen, sondern vielmehr um Verbesserungen bei der Verwaltung und Verwendung der Klasse. Der Grund dafür ist, dass die Fehler durch eine Interaktion innerhalb des Systems entstanden sind. Trotz der Versuche, die Ursache für diese Ausfälle herauszufinden, um sie zu beseitigen, blieben alle Versuche erfolglos. Einige dieser Fälle machen keinen Sinn, z. B. wenn wir Zeiger oder Rekursion in C/C++ verwenden, stürzt das Programm ab.
Von der Grundstufe bis zur Mittelstufe: Variablen (II)
Heute werden wir uns ansehen, wie man mit statischen Variablen arbeitet. Diese Frage verwirrt oft viele Programmierer, sowohl Anfänger als auch solche mit einiger Erfahrung, denn es gibt mehrere Empfehlungen, die bei der Verwendung dieses Mechanismus beachtet werden müssen. Die hier vorgestellten Materialien sind ausschließlich für didaktische Zwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 18): Neuronale Architektursuche mit Eigenvektoren
Die Suche nach neuronaler Architektur, ein automatischer Ansatz zur Bestimmung der idealen Einstellungen für neuronale Netze, kann bei vielen Optionen und großen Testdatensätzen von Vorteil sein. Wir untersuchen, wie dieser Prozess bei gepaarten Eigenvektoren noch effizienter gestaltet werden kann.
Von der Grundstufe bis zur Mittelstufe: Arrays und Zeichenketten (II)
In diesem Artikel werde ich zeigen, dass wir, obwohl wir uns noch in einem sehr grundlegenden Stadium der Programmierung befinden, bereits einige interessante Anwendungen realisieren können. In diesem Fall werden wir einen recht einfachen Passwortgenerator erstellen. Auf diese Weise werden wir in der Lage sein, einige der bisher erläuterten Konzepte anzuwenden. Darüber hinaus werden wir uns ansehen, wie Lösungen für einige spezifische Probleme entwickelt werden können.
Klassische Strategien neu interpretieren (Teil VI): Analyse mehrerer Zeitrahmen
In dieser Artikelserie nehmen wir klassische Strategien unter die Lupe, um zu sehen, ob wir sie mithilfe von KI verbessern können. Im heutigen Artikel werden wir die beliebte Strategie der Analyse mehrerer Zeitrahmen untersuchen, um zu beurteilen, ob die Strategie durch KI verbessert werden kann.
Entwicklung des Price Action Analysis Toolkit (Teil 26): Pin Bar, Engulfing Patterns und RSI Divergence (Multi-Pattern) Tool
Im Einklang mit unserem Ziel, praktische Tools zu Preis-Aktionen zu entwickeln, untersucht dieser Artikel die Erstellung eines EA, der die Muster von Pin-Bars und Engulfing erkennt und die RSI-Divergenz als Bestätigungsauslöser verwendet, bevor er Handelssignale erzeugt.
Selbstoptimierender Expert Advisor mit MQL5 und Python (Teil IV): Stacking-Modelle
Heute werden wir Ihnen zeigen, wie Sie KI-gestützte Handelsanwendungen entwickeln können, die aus ihren eigenen Fehlern lernen. Wir werden eine Technik demonstrieren, die als Stacking bekannt ist und bei der wir 2 Modelle verwenden, um eine Vorhersage zu treffen. Das erste Modell ist in der Regel ein schwächerer Lerner, und das zweite Modell ist in der Regel ein leistungsfähigeres Modell, das die Residuen unseres schwächeren Lerners lernt. Unser Ziel ist es, ein Ensemble von Modellen zu erstellen, um hoffentlich eine höhere Genauigkeit zu erreichen.
SQLite-Fähigkeiten in MQL5: Beispiel für ein Dashboard mit Handelsstatistiken nach Symbolen und magischen Zahlen
In diesem Artikel werden wir einen Indikator erstellen, der Handelsstatistiken auf einem Dashboard nach Konto, Symbolen und Handelsstrategien anzeigt. Wir werden den Code anhand von Beispielen aus der Dokumentation und dem Artikel über die Arbeit mit Datenbanken implementieren.
Meistern der Log-Einträge (Teil 5): Optimierungen mit Cache und Rotation
Dieser Artikel verbessert die Logging-Bibliothek durch Hinzufügen von Formatierern durch die Klasse CIntervalWatcher zur Verwaltung von Ausführungszyklen, Optimierung mit Caching und Dateirotation, Leistungstests und praktischen Beispielen. Mit diesen Verbesserungen gewährleisten wir ein effizientes, skalierbares und anpassungsfähiges Protokollierungssystem für unterschiedliche Entwicklungsszenarien.
Der Kalman-Filter für Forex-Strategien der Rückkehr zur Mitte
Der Kalman-Filter ist ein rekursiver Algorithmus, der im algorithmischen Handel verwendet wird, um den wahren Zustand einer Finanzzeitreihe durch Herausfiltern von Rauschen aus den Preisbewegungen zu schätzen. Er aktualisiert die Vorhersagen dynamisch auf der Grundlage neuer Marktdaten, was ihn für adaptive Strategien wie Mean Reversion wertvoll macht. In diesem Artikel wird zunächst der Kalman-Filter vorgestellt und seine Berechnung und Anwendung erläutert. Als nächstes wenden wir den Filter auf eine klassische Devisenstrategie, der Rückkehr zur Mitte, als Beispiel an. Schließlich führen wir verschiedene statistische Analysen durch, indem wir den Filter mit einem gleitenden Durchschnitt für verschiedene Devisenpaare vergleichen.
Entwicklung eines Replay-Systems (Teil 60): Abspielen des Dienstes (I)
Wir haben lange Zeit nur an den Indikatoren gearbeitet, aber jetzt ist es an der Zeit, den Dienst wieder zum Laufen zu bringen und zu sehen, wie das Chart auf der Grundlage der bereitgestellten Daten erstellt wird. Da die ganze Sache jedoch nicht so einfach ist, müssen wir aufmerksam sein, um zu verstehen, was uns erwartet.
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil II): Verbesserte Reaktionsfähigkeit und schnelle Nachrichtenübermittlung
In diesem Artikel werden wir die Reaktionsfähigkeit des Admin Panels verbessern, das wir zuvor erstellt haben. Darüber hinaus werden wir die Bedeutung der schnellen Nachrichtenübermittlung im Zusammenhang mit Handelssignalen untersuchen.
Mustererkennung mit dynamischer Zeitnormierung in MQL5
In diesem Artikel erörtern wir das Konzept der dynamischen Zeitnormierung als Mittel zur Ermittlung von Vorhersagemustern in Finanzzeitreihen. Wir werden uns ansehen, wie es funktioniert, und seine Implementierung in reinem MQL5 vorstellen.
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 11): Heikin Ashi Signal EA
MQL5 bietet unendlich viele Möglichkeiten, automatisierte Handelssysteme zu entwickeln, die auf Ihre Wünsche zugeschnitten sind. Wussten Sie, dass er sogar komplexe mathematische Berechnungen durchführen kann? In diesem Artikel stellen wir die japanische Heikin Ashi Technik als automatisierte Handelsstrategie vor.
Von der Grundstufe bis zur Mittelstufe: Arrays und Zeichenketten (III)
Dieser Artikel behandelt zwei Aspekte. Erstens, wie die Standardbibliothek binäre Werte in andere Darstellungen wie oktal, dezimal und hexadezimal konvertieren kann. Zweitens werden wir darüber sprechen, wie wir die Breite unseres Passworts auf der Grundlage der geheimen Phrase bestimmen können, indem wir das bereits erworbene Wissen nutzen.
Vom Neuling zum Experten: Support and Resistance Strength Indicator (SRSI)
In diesem Artikel erfahren Sie, wie Sie die MQL5-Programmierung nutzen können, um Marktniveaus zu bestimmen und zwischen schwächeren und stärkeren Kursniveaus zu unterscheiden. Wir werden einen funktionierenden Support and Resistance Strength Indicator (SRSI) entwickeln.
Larry Connors‘ Strategien RSI2 Mean-Reversion im Day-Trading
Larry Connors ist ein renommierter Händler und Autor, der vor allem für seine Arbeit im Bereich des quantitativen Handels und für Strategien wie den 2-Perioden-RSI (RSI2) bekannt ist, der dabei hilft, kurzfristig überkaufte und überverkaufte Marktbedingungen zu erkennen. In diesem Artikel werden wir zunächst die Motivation für unsere Forschung erläutern, dann drei von Connors' berühmtesten Strategien in MQL5 nachbilden und sie auf den Intraday-Handel mit dem S&P 500 Index CFD anwenden.