Artikel mit Beispielen für das Programmieren in MQL5

icon

Unterschiedlichste Artikel mit Beispielen über die Erstellung von Indikatoren und Robotern für die Handelsplattform MetaTrader in MQL5 warten auf Sie. Jeder Artikel hat Quellcodes, die Sie im MetaEditor öffnen und selbst starten können.

Diese Artikel sind hilfsreich sowohl für Anfänger im automatischen Handel, als auch für fortgeschritte Händler mit Erfahrungen im Programmieren und Handel. Hier finden Sie nicht nur Beispiele, sondern auch neue Ideen.

Neuer Artikel
letzte | beste
preview
DoEasy. Steuerung (Teil 8): Objektkategorien von Basis-WinForms zur Steuerung von GroupBox- und CheckBox

DoEasy. Steuerung (Teil 8): Objektkategorien von Basis-WinForms zur Steuerung von GroupBox- und CheckBox

Der Artikel befasst sich mit der Erstellung von ‚GroupBox‘ und ‚CheckBox‘ WinForms Objekten, sowie der Entwicklung von Basisobjekten für WinForms Objektkategorien. Alle erstellten Objekte sind noch statisch, d.h. sie können nicht mit der Maus interagieren.
preview
Entwicklung eines MQL5 RL-Agenten mit Integration von RestAPI (Teil 3): Erstellen von automatischen Bewegungen und Testskripten in MQL5

Entwicklung eines MQL5 RL-Agenten mit Integration von RestAPI (Teil 3): Erstellen von automatischen Bewegungen und Testskripten in MQL5

Dieser Artikel beschreibt die Implementierung von automatischen Zügen im Tic-Tac-Toe-Spiel in Python, integriert mit MQL5-Funktionen und Unit-Tests. Das Ziel ist es, die Interaktivität des Spiels zu verbessern und die Zuverlässigkeit des Systems durch Tests in MQL5 zu gewährleisten. Die Präsentation umfasst die Entwicklung der Spiellogik, die Integration und praktische Tests und schließt mit der Erstellung einer dynamischen Spielumgebung und eines robusten integrierten Systems.
preview
Aufbau des Kerzenmodells Trend Constraint (Teil 9): Expert Advisor für mehrere Strategien (III)

Aufbau des Kerzenmodells Trend Constraint (Teil 9): Expert Advisor für mehrere Strategien (III)

Willkommen zum dritten Teil unserer Trendserie! Heute werden wir uns mit der Verwendung von Divergenzen als Strategie zur Identifizierung optimaler Einstiegspunkte innerhalb des vorherrschenden Tagestrends beschäftigen. Wir werden auch einen nutzerdefinierten Gewinnsicherungsmechanismus einführen, der einem Trailing-Stop-Loss ähnelt, aber einzigartige Verbesserungen aufweist. Darüber hinaus werden wir den Experten Trend Constraint zu einer fortschrittlicheren Version ausbauen und eine neue Handelsausführungsbedingung einführen, die die bestehenden Bedingungen ergänzt. Im weiteren Verlauf werden wir die praktische Anwendung von MQL5 bei der Entwicklung von Algorithmen weiter erforschen und Ihnen tiefer gehende Einblicke und umsetzbare Techniken vermitteln.
preview
Formulierung eines dynamischen Multi-Pair EA (Teil 1): Währungskorrelation und inverse Korrelation

Formulierung eines dynamischen Multi-Pair EA (Teil 1): Währungskorrelation und inverse Korrelation

Der dynamische Multi-Pair Expert Advisor nutzt sowohl Korrelations- als auch inverse Korrelationsstrategien zur Optimierung der Handelsperformance. Durch die Analyse von Echtzeit-Marktdaten werden die Beziehungen zwischen Währungspaaren identifiziert und genutzt.
preview
Selbstoptimierende Expert Advisors in MQL5 (Teil 9): Kreuzen zweier gleitender Durchschnitte

Selbstoptimierende Expert Advisors in MQL5 (Teil 9): Kreuzen zweier gleitender Durchschnitte

Dieser Artikel beschreibt den Aufbau einer Strategie des Kreuzens zweier gleitender Durchschnitte, die Signale aus einem höheren Zeitrahmen (D1) verwendet, um Einstiege auf einem niedrigeren Zeitrahmen (M15) zu steuern, wobei die Stop-Loss-Niveaus aus einem Zeitrahmen mit mittlerem Risiko (H4) berechnet werden. Es werden Systemkonstanten, nutzerdefinierte Enumerationen und Logik für trendfolgende und zum Mittelwert rückkehrende Modi eingeführt, wobei der Schwerpunkt auf Modularität und künftige Optimierung mithilfe eines genetischen Algorithmus liegt. Der Ansatz ermöglicht flexible Einstiegs- und Ausstiegsbedingungen und zielt darauf ab, die Signalverzögerung zu verringern und das Handels-Timing zu verbessern, indem Einstiegsmöglichkeiten im unteren Zeitrahmen mit Trends im oberen Zeitrahmen abgestimmt werden.
preview
Neuronale Netze leicht gemacht (Teil 91): Vorhersage durch Frequenzbereiche (Frequency Domain Forecasting, FreDF)

Neuronale Netze leicht gemacht (Teil 91): Vorhersage durch Frequenzbereiche (Frequency Domain Forecasting, FreDF)

Wir fahren fort mit der Analyse und Vorhersage von Zeitreihen im Frequenzbereich. In diesem Artikel machen wir uns mit einer neuen Methode zur Vorhersage von Daten im Frequenzbereich vertraut, die zu vielen der bisher untersuchten Algorithmen hinzugefügt werden kann.
preview
Von der Grundstufe bis zur Mittelstufe: Variablen (III)

Von der Grundstufe bis zur Mittelstufe: Variablen (III)

Heute schauen wir uns an, wie vordefinierte Variablen und Konstanten der Sprache MQL5 verwendet werden. Darüber hinaus werden wir einen weiteren speziellen Variablentyp analysieren: Funktionen. Zu wissen, wie man richtig mit diesen Variablen arbeitet, kann den Unterschied zwischen einer funktionierenden und einer nicht funktionierenden Anwendung ausmachen. Um zu verstehen, was hier vorgestellt wird, ist es notwendig, das Material zu verstehen, das in früheren Artikeln besprochen wurde.
preview
Entwicklung eines Replay Systems (Teil 41): Beginn der zweiten Phase (II)

Entwicklung eines Replay Systems (Teil 41): Beginn der zweiten Phase (II)

Wenn Ihnen bis zu diesem Punkt alles richtig erschien, bedeutet dies, dass Sie bei der Entwicklung von Anwendungen nicht wirklich an die langfristige Perspektive denken. Im Laufe der Zeit müssen Sie keine neuen Anwendungen mehr programmieren, sondern nur noch dafür sorgen, dass sie zusammenarbeiten. Schauen wir uns also an, wie man den Mauszeiger fertigstellt.
preview
Entwicklung eines Replay Systems (Teil 54): Die Geburt des ersten Moduls

Entwicklung eines Replay Systems (Teil 54): Die Geburt des ersten Moduls

In diesem Artikel werden wir uns ansehen, wie wir das erste einer Reihe von wirklich funktionalen Modulen für die Verwendung im Replay-/Simulatorsystem zusammenstellen, die auch für andere Zwecke geeignet sein werden. Die Rede ist vom Mausmodul.
preview
DoEasy. Dienstfunktionen (Teil 3): Das Muster der „Outside Bar“

DoEasy. Dienstfunktionen (Teil 3): Das Muster der „Outside Bar“

In diesem Artikel werden wir das Preismuster der „Outside Bar“ in der DoEasy-Bibliothek entwickeln und die Methoden des Zugriffs auf das Preismuster-Management optimieren. Außerdem werden wir Fehler und Unzulänglichkeiten beheben, die bei den Bibliothekstests festgestellt wurden.
preview
Von der Grundstufe bis zur Mittelstufe: Die Direktive Include

Von der Grundstufe bis zur Mittelstufe: Die Direktive Include

Im heutigen Artikel werden wir eine Kompilierungsdirektive besprechen, die in verschiedenen Codes, die in MQL5 zu finden sind, häufig verwendet wird. Obwohl diese Direktive hier nur oberflächlich erklärt wird, ist es wichtig, dass Sie sich mit ihrer Verwendung vertraut machen, da sie bald unverzichtbar sein wird, wenn Sie sich auf höheren Ebenen der Programmierung bewegen. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Entwicklung eines Expert Advisors in MQL5 für Ausbrüche nach kalenderbasierten Nachrichtenereignissen

Entwicklung eines Expert Advisors in MQL5 für Ausbrüche nach kalenderbasierten Nachrichtenereignissen

Die Volatilität erreicht ihren Höhepunkt in der Regel in der Nähe von Ereignissen mit hohem Nachrichtenwert, wodurch sich erhebliche Ausbruchschancen ergeben. In diesem Artikel werden wir den Umsetzungsprozess einer kalenderbasierten Ausbruch-Strategie skizzieren. Wir werden alles von der Erstellung einer Klasse zur Interpretation und Speicherung von Kalenderdaten über die Entwicklung realistischer Backtests mit diesen Daten bis hin zur Implementierung von Ausführungscode für den Live-Handel behandeln.
preview
Entwicklung eines Replay Systems (Teil 38): Den Weg ebnen (II)

Entwicklung eines Replay Systems (Teil 38): Den Weg ebnen (II)

Viele Menschen, die sich für MQL5-Programmierer halten, verfügen nicht über die Grundkenntnisse, die ich in diesem Artikel erläutern werde. Viele Menschen halten MQL5 für ein begrenztes Werkzeug, aber der eigentliche Grund ist, dass sie nicht über die erforderlichen Kenntnisse verfügen. Wenn Sie also etwas nicht wissen, brauchen Sie sich dafür nicht zu schämen. Es ist besser, sich dafür zu schämen, nicht zu fragen. MetaTrader 5 einfach dazu zu zwingen, die Indikatorduplikation zu deaktivieren, gewährleistet in keiner Weise eine Zwei-Wege-Kommunikation zwischen dem Indikator und dem Expert Advisor. Davon sind wir noch weit entfernt, aber die Tatsache, dass sich der Indikator auf dem Chart nicht dupliziert, stimmt uns zuversichtlich.
preview
Wichtigste Änderungen des Algorithmus für die künstliche kooperative Suche (ACSm)

Wichtigste Änderungen des Algorithmus für die künstliche kooperative Suche (ACSm)

Hier werden wir die Entwicklung des ACS-Algorithmus betrachten: drei Änderungen zur Verbesserung der Konvergenzeigenschaften und der Effizienz des Algorithmus. Umwandlung eines der führenden Optimierungsalgorithmen. Von Matrixmodifikationen bis hin zu revolutionären Ansätzen zur Bevölkerungsbildung.
preview
Umstellung auf MQL5 Algo Forge (Teil 1): Erstellen des Haupt-Repositorys

Umstellung auf MQL5 Algo Forge (Teil 1): Erstellen des Haupt-Repositorys

Bei der Arbeit an Projekten in MetaEditor stehen Entwickler oft vor der Notwendigkeit, Codeversionen zu verwalten. MetaQuotes kündigte kürzlich die Migration zu GIT und die Einführung von MQL5 Algo Forge mit Codeversionierung und Kollaborationsfunktionen an. In diesem Artikel wird erörtert, wie die neuen und bereits vorhandenen Tools effizienter genutzt werden können.
preview
Erstellen von selbstoptimierenden Expert Advisor in MQL5 (Teil 6): Selbstanpassende Handelsregeln (II)

Erstellen von selbstoptimierenden Expert Advisor in MQL5 (Teil 6): Selbstanpassende Handelsregeln (II)

Dieser Artikel befasst sich mit der Optimierung der RSI-Werte und -Perioden für bessere Handelssignale. Wir stellen Methoden zur Schätzung optimaler RSI-Werte vor und automatisieren die Periodenauswahl mithilfe von Rastersuche und statistischen Modellen. Schließlich implementieren wir die Lösung in MQL5 und setzen Python für die Analyse ein. Unser Ansatz ist pragmatisch und geradlinig, um Ihnen zu helfen, potenziell komplizierte Probleme auf einfache Weise zu lösen.
preview
DoEasy. Steuerung (Teil 13): Optimierung der Interaktion von WinForms-Objekten mit der Maus, Beginn der Entwicklung des WinForms-Objekts TabControl

DoEasy. Steuerung (Teil 13): Optimierung der Interaktion von WinForms-Objekten mit der Maus, Beginn der Entwicklung des WinForms-Objekts TabControl

In diesem Artikel werde ich den Umgang mit dem Aussehen von WinForms-Objekte nach dem Bewegen des Mauszeigers weg von dem Objekt, sowie die Entwicklung der TabControl WinForms-Objekt korrigieren und optimieren.
preview
Neuinterpretation klassischer Strategien in MQL5 (Teil III): Prognose des FTSE 100

Neuinterpretation klassischer Strategien in MQL5 (Teil III): Prognose des FTSE 100

In dieser Artikelserie werden wir uns bekannte Handelsstrategien noch einmal ansehen und untersuchen, ob wir diese Strategien mithilfe von KI verbessern können. Im heutigen Artikel werden wir uns mit dem FTSE 100 befassen und versuchen, den Index anhand eines Teils der Einzelwerte, aus denen er sich zusammensetzt, zu prognostizieren.
preview
SQLite-Fähigkeiten in MQL5: Beispiel für ein Dashboard mit Handelsstatistiken nach Symbolen und magischen Zahlen

SQLite-Fähigkeiten in MQL5: Beispiel für ein Dashboard mit Handelsstatistiken nach Symbolen und magischen Zahlen

In diesem Artikel werden wir einen Indikator erstellen, der Handelsstatistiken auf einem Dashboard nach Konto, Symbolen und Handelsstrategien anzeigt. Wir werden den Code anhand von Beispielen aus der Dokumentation und dem Artikel über die Arbeit mit Datenbanken implementieren.
preview
Die Grenzen des maschinellen Lernens überwinden (Teil 4): Überwindung des irreduziblen Fehlers durch mehrere Prognosehorizonte

Die Grenzen des maschinellen Lernens überwinden (Teil 4): Überwindung des irreduziblen Fehlers durch mehrere Prognosehorizonte

Maschinelles Lernen wird oft durch die Brille der Statistik oder der linearen Algebra betrachtet, aber dieser Artikel betont eine geometrische Perspektive der Modellvorhersagen. Sie zeigt, dass sich die Modelle dem Ziel nicht wirklich annähern, sondern es auf ein neues Koordinatensystem abbilden, was zu einer inhärenten Fehlausrichtung führt, die irreduzible Fehler zur Folge hat. In dem Artikel wird vorgeschlagen, dass mehrstufige Vorhersagen, bei denen die Prognosen des Modells über verschiedene Zeithorizonte hinweg verglichen werden, einen effektiveren Ansatz darstellen als direkte Vergleiche mit dem Ziel. Durch die Anwendung dieser Methode auf ein Handelsmodell zeigt der Artikel erhebliche Verbesserungen der Rentabilität und Genauigkeit, ohne das zugrunde liegende Modell zu verändern.
preview
Der Kalman-Filter für Forex-Strategien der Rückkehr zur Mitte

Der Kalman-Filter für Forex-Strategien der Rückkehr zur Mitte

Der Kalman-Filter ist ein rekursiver Algorithmus, der im algorithmischen Handel verwendet wird, um den wahren Zustand einer Finanzzeitreihe durch Herausfiltern von Rauschen aus den Preisbewegungen zu schätzen. Er aktualisiert die Vorhersagen dynamisch auf der Grundlage neuer Marktdaten, was ihn für adaptive Strategien wie Mean Reversion wertvoll macht. In diesem Artikel wird zunächst der Kalman-Filter vorgestellt und seine Berechnung und Anwendung erläutert. Als nächstes wenden wir den Filter auf eine klassische Devisenstrategie, der Rückkehr zur Mitte, als Beispiel an. Schließlich führen wir verschiedene statistische Analysen durch, indem wir den Filter mit einem gleitenden Durchschnitt für verschiedene Devisenpaare vergleichen.
preview
Klassische Strategien neu interpretieren (Teil VI): Analyse mehrerer Zeitrahmen

Klassische Strategien neu interpretieren (Teil VI): Analyse mehrerer Zeitrahmen

In dieser Artikelserie nehmen wir klassische Strategien unter die Lupe, um zu sehen, ob wir sie mithilfe von KI verbessern können. Im heutigen Artikel werden wir die beliebte Strategie der Analyse mehrerer Zeitrahmen untersuchen, um zu beurteilen, ob die Strategie durch KI verbessert werden kann.
preview
Ordinale Kodierung für Nominalvariablen

Ordinale Kodierung für Nominalvariablen

In diesem Artikel erörtern und demonstrieren wir, wie man nominale Prädiktoren in numerische Formate umwandelt, die für Algorithmen des maschinellen Lernens geeignet sind, und zwar sowohl mit Python als auch mit MQL5.
preview
MQL5 Handels-Toolkit (Teil 6): Erweitern der Bibliothek der History Management EX5 mit den Funktionen für den zuletzt ausgelösten, schwebenden Auftrag

MQL5 Handels-Toolkit (Teil 6): Erweitern der Bibliothek der History Management EX5 mit den Funktionen für den zuletzt ausgelösten, schwebenden Auftrag

Lernen Sie, wie Sie ein EX5-Modul mit exportierbaren Funktionen erstellen, die reibungslos Daten für den zuletzt ausgelösten, schwebenden Auftrag abfragen und speichern. In dieser umfassenden Schritt-für-Schritt-Anleitung werden wir die Bibliothek von History Management EX5 durch die Entwicklung dedizierter und unterteilter Funktionen erweitern, um wesentliche Eigenschaften des letzten ausgelösten, schwebenden Auftrags abzurufen. Zu diesen Eigenschaften gehören die Auftragsart, die Einrichtungszeit, die Ausführungszeit, die Art der Zuweisung und andere wichtige Details, die für eine effektive Verwaltung und Analyse des Handelsverlaufs ausstehender Aufträge erforderlich sind.
preview
Meistern der Log-Einträge (Teil 5): Optimierungen mit Cache und Rotation

Meistern der Log-Einträge (Teil 5): Optimierungen mit Cache und Rotation

Dieser Artikel verbessert die Logging-Bibliothek durch Hinzufügen von Formatierern durch die Klasse CIntervalWatcher zur Verwaltung von Ausführungszyklen, Optimierung mit Caching und Dateirotation, Leistungstests und praktischen Beispielen. Mit diesen Verbesserungen gewährleisten wir ein effizientes, skalierbares und anpassungsfähiges Protokollierungssystem für unterschiedliche Entwicklungsszenarien.
preview
Entwicklung eines Replay Systems (Teil 35): Anpassungen vornehmen (I)

Entwicklung eines Replay Systems (Teil 35): Anpassungen vornehmen (I)

Bevor wir weitermachen können, müssen wir einige Dinge in Ordnung bringen. Dabei handelt es sich nicht um die notwendigen Korrekturen, sondern vielmehr um Verbesserungen bei der Verwaltung und Verwendung der Klasse. Der Grund dafür ist, dass die Fehler durch eine Interaktion innerhalb des Systems entstanden sind. Trotz der Versuche, die Ursache für diese Ausfälle herauszufinden, um sie zu beseitigen, blieben alle Versuche erfolglos. Einige dieser Fälle machen keinen Sinn, z. B. wenn wir Zeiger oder Rekursion in C/C++ verwenden, stürzt das Programm ab.
preview
Developing an MQL5 RL agent with RestAPI integration (Part 2): MQL5 functions for HTTP interaction with the tic-tac-toe game REST API

Developing an MQL5 RL agent with RestAPI integration (Part 2): MQL5 functions for HTTP interaction with the tic-tac-toe game REST API

In this article we will talk about how MQL5 can interact with Python and FastAPI, using HTTP calls in MQL5 to interact with the tic-tac-toe game in Python. The article discusses the creation of an API using FastAPI for this integration and provides a test script in MQL5, highlighting the versatility of MQL5, the simplicity of Python, and the effectiveness of FastAPI in connecting different technologies to create innovative solutions.
preview
Der Optimierungsalgorithmus Brain Storm (Teil II): Multimodalität

Der Optimierungsalgorithmus Brain Storm (Teil II): Multimodalität

Im zweiten Teil des Artikels werden wir uns mit der praktischen Implementierung des BSO-Algorithmus befassen, Tests mit Testfunktionen durchführen und die Effizienz von BSO mit anderen Optimierungsmethoden vergleichen.
preview
Implementierung des kryptografischen SHA-256-Algorithmus von Grund auf in MQL5

Implementierung des kryptografischen SHA-256-Algorithmus von Grund auf in MQL5

Die Entwicklung DLL-freier Integrationen von Kryptowährungsbörsen war lange Zeit eine Herausforderung, aber diese Lösung bietet ein komplettes Framework für die direkte Marktanbindung.
preview
Vom Neuling zum Experten: Support and Resistance Strength Indicator (SRSI)

Vom Neuling zum Experten: Support and Resistance Strength Indicator (SRSI)

In diesem Artikel erfahren Sie, wie Sie die MQL5-Programmierung nutzen können, um Marktniveaus zu bestimmen und zwischen schwächeren und stärkeren Kursniveaus zu unterscheiden. Wir werden einen funktionierenden Support and Resistance Strength Indicator (SRSI) entwickeln.
preview
Alternative Risiko-Ertrags-Metriken in MQL5

Alternative Risiko-Ertrags-Metriken in MQL5

In diesem Artikel stellen wir die Umsetzung mehrere Risikorenditekennzahlen vor, die als Alternativen zur Sharpe-Ratio angepriesen werden, und untersuchen hypothetische Aktienkurven, um ihre Eigenschaften zu analysieren.
preview
Developing a Replay System (Part 36): Making Adjustments (II)

Developing a Replay System (Part 36): Making Adjustments (II)

One of the things that can make our lives as programmers difficult is assumptions. In this article, I will show you how dangerous it is to make assumptions: both in MQL5 programming, where you assume that the type will have a certain value, and in MetaTrader 5, where you assume that different servers work the same.
preview
Überwachung des Handels mit Push-Benachrichtigungen — Beispiel für einen MetaTrader 5 Dienst

Überwachung des Handels mit Push-Benachrichtigungen — Beispiel für einen MetaTrader 5 Dienst

In diesem Artikel befassen wir uns mit der Erstellung einer Service-App für das Senden von Benachrichtigungen über Handelsergebnisse an ein Smartphone. Wir werden lernen, wie man mit Listen von Objekten der Standardbibliothek umgeht, um eine Auswahl von Objekten nach erforderlichen Eigenschaften zu organisieren.
preview
Klassische Strategien neu interpretieren (Teil IX): Analyse mehrerer Zeitrahmen (II)

Klassische Strategien neu interpretieren (Teil IX): Analyse mehrerer Zeitrahmen (II)

In der heutigen Diskussion untersuchen wir die Strategie der Analyse mehrerer Zeitrahmen, um zu erfahren, in welchem Zeitrahmen unser KI-Modell am besten abschneidet. Unsere Analyse führt uns zu dem Schluss, dass die monatlichen und stündlichen Zeitrahmen Modelle mit relativ niedrigen Fehlerquoten für das EURUSD-Paar ergeben. Wir haben dies zu unserem Vorteil genutzt und einen Handelsalgorithmus entwickelt, der KI-Prognosen auf dem monatlichen Zeitrahmen erstellt und seine Handelsgeschäfte auf dem stündlichen Zeitrahmen ausführt.
preview
Klassische Strategien neu interpretieren (Teil VIII): Währungsmärkte und Edelmetalle zum USDCAD

Klassische Strategien neu interpretieren (Teil VIII): Währungsmärkte und Edelmetalle zum USDCAD

In dieser Artikelserie nehmen wir bekannte Handelsstrategien unter die Lupe, um zu sehen, ob wir sie mithilfe von KI verbessern können. Testen Sie mit uns in der heutigen Diskussion, ob es eine zuverlässige Beziehung zwischen Edelmetallen und Währungen gibt.
preview
Selbstoptimierender Expert Advisor mit MQL5 und Python (Teil IV): Stacking-Modelle

Selbstoptimierender Expert Advisor mit MQL5 und Python (Teil IV): Stacking-Modelle

Heute werden wir Ihnen zeigen, wie Sie KI-gestützte Handelsanwendungen entwickeln können, die aus ihren eigenen Fehlern lernen. Wir werden eine Technik demonstrieren, die als Stacking bekannt ist und bei der wir 2 Modelle verwenden, um eine Vorhersage zu treffen. Das erste Modell ist in der Regel ein schwächerer Lerner, und das zweite Modell ist in der Regel ein leistungsfähigeres Modell, das die Residuen unseres schwächeren Lerners lernt. Unser Ziel ist es, ein Ensemble von Modellen zu erstellen, um hoffentlich eine höhere Genauigkeit zu erreichen.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 11): Heikin Ashi Signal EA

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 11): Heikin Ashi Signal EA

MQL5 bietet unendlich viele Möglichkeiten, automatisierte Handelssysteme zu entwickeln, die auf Ihre Wünsche zugeschnitten sind. Wussten Sie, dass er sogar komplexe mathematische Berechnungen durchführen kann? In diesem Artikel stellen wir die japanische Heikin Ashi Technik als automatisierte Handelsstrategie vor.
preview
Larry Connors‘ Strategien RSI2 Mean-Reversion im Day-Trading

Larry Connors‘ Strategien RSI2 Mean-Reversion im Day-Trading

Larry Connors ist ein renommierter Händler und Autor, der vor allem für seine Arbeit im Bereich des quantitativen Handels und für Strategien wie den 2-Perioden-RSI (RSI2) bekannt ist, der dabei hilft, kurzfristig überkaufte und überverkaufte Marktbedingungen zu erkennen. In diesem Artikel werden wir zunächst die Motivation für unsere Forschung erläutern, dann drei von Connors' berühmtesten Strategien in MQL5 nachbilden und sie auf den Intraday-Handel mit dem S&P 500 Index CFD anwenden.
preview
Selbstoptimierende Expert Advisors in MQL5 (Teil 13): Eine sanfte Einführung in die Kontrolltheorie mit Hilfe der Matrixfaktorisierung

Selbstoptimierende Expert Advisors in MQL5 (Teil 13): Eine sanfte Einführung in die Kontrolltheorie mit Hilfe der Matrixfaktorisierung

Die Finanzmärkte sind unberechenbar, und Handelsstrategien, die in der Vergangenheit profitabel erschienen, brechen unter realen Marktbedingungen oft zusammen. Das liegt daran, dass die meisten Strategien, wenn sie einmal eingeführt sind, nicht mehr angepasst werden oder aus ihren Fehlern lernen können. Mit Hilfe von Ideen aus der Kontrolltheorie können wir mit Hilfe von Rückkopplungsreglern beobachten, wie unsere Strategien mit den Märkten interagieren und ihr Verhalten auf Rentabilität ausrichten. Unsere Ergebnisse zeigen, dass das Hinzufügen eines Feedback-Controllers zu einer einfachen gleitenden Durchschnittsstrategie die Gewinne verbessert, das Risiko reduziert und die Effizienz erhöht, was beweist, dass dieser Ansatz ein großes Potenzial für Handelsanwendungen hat.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 18): Neuronale Architektursuche mit Eigenvektoren

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 18): Neuronale Architektursuche mit Eigenvektoren

Die Suche nach neuronaler Architektur, ein automatischer Ansatz zur Bestimmung der idealen Einstellungen für neuronale Netze, kann bei vielen Optionen und großen Testdatensätzen von Vorteil sein. Wir untersuchen, wie dieser Prozess bei gepaarten Eigenvektoren noch effizienter gestaltet werden kann.