Artikel über das Programmieren in MQL4 und MQL5

icon

Lernen Sie die Sprache von Handelsstrategien MQL5 nach den hier veröffentlichten Artikeln, die meisten von denen Sie - die Mitglieder der Community - geschrieben haben. Alle Artikel sind in drei Kategorien aufgeteilt, damit man eine Antwort auf unterschiedliche Fragen des Programmierens schnell finden könnte: "Integration", "Tester", "Handelsstrategien" und vieles mehr.

Verfolgen Sie neue Veröffentlichungen und diskutieren Sie über diese im Forum!

Neuer Artikel
letzte | beste
preview
Entwicklung eines Replay Systems (Teil 35): Anpassungen vornehmen (I)

Entwicklung eines Replay Systems (Teil 35): Anpassungen vornehmen (I)

Bevor wir weitermachen können, müssen wir einige Dinge in Ordnung bringen. Dabei handelt es sich nicht um die notwendigen Korrekturen, sondern vielmehr um Verbesserungen bei der Verwaltung und Verwendung der Klasse. Der Grund dafür ist, dass die Fehler durch eine Interaktion innerhalb des Systems entstanden sind. Trotz der Versuche, die Ursache für diese Ausfälle herauszufinden, um sie zu beseitigen, blieben alle Versuche erfolglos. Einige dieser Fälle machen keinen Sinn, z. B. wenn wir Zeiger oder Rekursion in C/C++ verwenden, stürzt das Programm ab.
preview
Klassische Strategien neu interpretieren (Teil IX): Analyse mehrerer Zeitrahmen (II)

Klassische Strategien neu interpretieren (Teil IX): Analyse mehrerer Zeitrahmen (II)

In der heutigen Diskussion untersuchen wir die Strategie der Analyse mehrerer Zeitrahmen, um zu erfahren, in welchem Zeitrahmen unser KI-Modell am besten abschneidet. Unsere Analyse führt uns zu dem Schluss, dass die monatlichen und stündlichen Zeitrahmen Modelle mit relativ niedrigen Fehlerquoten für das EURUSD-Paar ergeben. Wir haben dies zu unserem Vorteil genutzt und einen Handelsalgorithmus entwickelt, der KI-Prognosen auf dem monatlichen Zeitrahmen erstellt und seine Handelsgeschäfte auf dem stündlichen Zeitrahmen ausführt.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 43): Reinforcement Learning mit SARSA

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 43): Reinforcement Learning mit SARSA

SARSA, eine Abkürzung für State-Action-Reward-State-Action, ist ein weiterer Algorithmus, der bei der Implementierung von Reinforcement Learning verwendet werden kann. Wie bei Q-Learning und DQN haben wir also untersucht, wie dies als unabhängiges Modell und nicht nur als Trainingsmechanismus in assistentengestützten Expert Advisors implementiert werden kann.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 3): Das Zone Recovery RSI System für ein dynamisches Handelsmanagement

Automatisieren von Handelsstrategien in MQL5 (Teil 3): Das Zone Recovery RSI System für ein dynamisches Handelsmanagement

In diesem Artikel erstellen wir ein Zone Recovery RSI EA System in MQL5, das RSI-Signale verwendet, um Handelsgeschäfte auszulösen und eine Recovery-Strategie, um auf Verluste zu reagieren. Wir implementieren die Klasse „ZoneRecovery“ zur Automatisierung von Handelseinträgen, Erholungslogik und Positionsmanagement. Der Artikel schließt mit Erkenntnissen zu den Backtests, um die Leistung zu optimieren und die Effektivität des EA zu erhöhen.
preview
Meistern der Log-Einträge (Teil 5): Optimierungen mit Cache und Rotation

Meistern der Log-Einträge (Teil 5): Optimierungen mit Cache und Rotation

Dieser Artikel verbessert die Logging-Bibliothek durch Hinzufügen von Formatierern durch die Klasse CIntervalWatcher zur Verwaltung von Ausführungszyklen, Optimierung mit Caching und Dateirotation, Leistungstests und praktischen Beispielen. Mit diesen Verbesserungen gewährleisten wir ein effizientes, skalierbares und anpassungsfähiges Protokollierungssystem für unterschiedliche Entwicklungsszenarien.
preview
Pipelines in MQL5

Pipelines in MQL5

In diesem Beitrag befassen wir uns mit einem wichtigen Schritt der Datenaufbereitung für das maschinelle Lernen, der zunehmend an Bedeutung gewinnt. Pipelines für die Datenvorverarbeitung. Dabei handelt es sich im Wesentlichen um eine rationalisierte Abfolge von Datenumwandlungsschritten, mit denen Rohdaten aufbereitet werden, bevor sie in ein Modell eingespeist werden. So uninteressant dies für den Laien auch erscheinen mag, diese „Datenstandardisierung“ spart nicht nur Trainingszeit und Ausführungskosten, sondern trägt auch zu einer besseren Generalisierung bei. In diesem Artikel konzentrieren wir uns auf einige SCIKIT-LEARN Vorverarbeitungsfunktionen, und während wir den MQL5-Assistenten nicht ausnutzen, werden wir in späteren Artikeln darauf zurückkommen.
preview
Neuronale Netze leicht gemacht (Teil 82): Modelle für gewöhnliche Differentialgleichungen (NeuralODE)

Neuronale Netze leicht gemacht (Teil 82): Modelle für gewöhnliche Differentialgleichungen (NeuralODE)

In diesem Artikel werden wir eine andere Art von Modellen erörtern, die auf die Untersuchung der Dynamik des Umgebungszustands abzielen.
preview
Preisgesteuertes CGI-Modell: Erweiterte Datennachbearbeitung und Implementierung

Preisgesteuertes CGI-Modell: Erweiterte Datennachbearbeitung und Implementierung

In diesem Artikel befassen wir uns mit der Entwicklung eines vollständig anpassbaren Skripts für den Preisdatenexport mit MQL5, das einen neuen Fortschritt in der Simulation des CGI-Modells Price Man darstellt. Wir haben fortschrittliche Verfeinerungstechniken implementiert, um sicherzustellen, dass die Daten nutzerfreundlich und für Animationszwecke optimiert sind. Außerdem werden wir die Möglichkeiten von Blender 3D bei der effektiven Arbeit mit und der Visualisierung von Preisdaten kennenlernen und sein Potenzial für die Erstellung dynamischer und ansprechender Animationen demonstrieren.
preview
Aufbau des Kerzenmodells Trend-Constraint (Teil 8): Entwicklung eines Expert Advisors (I)

Aufbau des Kerzenmodells Trend-Constraint (Teil 8): Entwicklung eines Expert Advisors (I)

In dieser Diskussion werden wir unseren ersten Expert Advisor in MQL5 erstellen, der auf dem Indikator basiert, den wir im vorherigen Artikel erstellt haben. Wir werden alle Funktionen abdecken, die erforderlich sind, um den Prozess zu automatisieren, einschließlich des Risikomanagements. Dies wird den Nutzern in hohem Maße zugute kommen, wenn sie von der manuellen Ausführung von Geschäften zu automatisierten Systemen übergehen.
preview
Hidden Markov Modelle für trendfolgende Volatilitätsprognosen

Hidden Markov Modelle für trendfolgende Volatilitätsprognosen

Hidden Markov Modelle (HMM) sind leistungsstarke statistische Instrumente, die durch die Analyse beobachtbarer Kursbewegungen die zugrunde liegenden Marktzustände identifizieren. Im Handel verbessern HMM die Volatilitätsprognose und liefern Informationen für Trendfolgestrategien, indem sie Marktverschiebungen modellieren und antizipieren. In diesem Artikel stellen wir das vollständige Verfahren zur Entwicklung einer Trendfolgestrategie vor, die HMM zur Prognose der Volatilität als Filter einsetzt.
preview
Statistische Arbitrage durch Mean Reversion im Paarhandel: Den Markt mit Mathematik schlagen

Statistische Arbitrage durch Mean Reversion im Paarhandel: Den Markt mit Mathematik schlagen

Dieser Artikel beschreibt die Grundlagen der statistischen Arbitrage auf Portfolioebene. Sein Ziel ist es, das Verständnis der Prinzipien der statistischen Arbitrage für Leser ohne tiefgreifende mathematische Kenntnisse zu erleichtern und einen konzeptionellen Rahmen für den Ausgangspunkt vorzuschlagen. Der Artikel enthält einen funktionierenden Expert Advisor, einige Anmerkungen zu seinem einjährigen Backtest und die entsprechenden Backtest-Konfigurationseinstellungen (.ini-Datei) für die Reproduktion des Experiments.
preview
Einführung in MQL5 (Teil 21): Automatisiertes Erkennen von harmonischen Mustern

Einführung in MQL5 (Teil 21): Automatisiertes Erkennen von harmonischen Mustern

Lernen Sie, wie Sie das harmonische Muster von Gartley im MetaTrader 5 mit MQL5 erkennen und anzeigen können. In diesem Artikel wird jeder Schritt des Prozesses erläutert, von der Identifizierung der Umkehrpunkte über die Anwendung der Fibonacci-Ratios bis hin zur Darstellung des gesamten Musters auf dem Chart zur eindeutigen visuellen Bestätigung.
preview
Neuronales Netz in der Praxis: Skizze eines Neurons

Neuronales Netz in der Praxis: Skizze eines Neurons

In diesem Artikel werden wir ein einfaches Neuron bauen. Und obwohl es einfach aussieht und viele diesen Code für völlig trivial und bedeutungslos halten mögen, möchte ich, dass Sie Spaß beim Studium dieser einfachen Skizze eines Neurons haben. Scheuen Sie sich nicht, den Code zu ändern, denn das Ziel ist es, ihn vollständig zu verstehen.
preview
Forex-Spread-Handel mit Saisonalität

Forex-Spread-Handel mit Saisonalität

Der Artikel untersucht die Möglichkeiten der Erstellung und Bereitstellung von Berichtsdaten über die Verwendung des Saisonalitätsfaktors beim Handel mit Spreads auf dem Forex.
preview
Von der Grundstufe bis zur Mittelstufe: Variablen (II)

Von der Grundstufe bis zur Mittelstufe: Variablen (II)

Heute werden wir uns ansehen, wie man mit statischen Variablen arbeitet. Diese Frage verwirrt oft viele Programmierer, sowohl Anfänger als auch solche mit einiger Erfahrung, denn es gibt mehrere Empfehlungen, die bei der Verwendung dieses Mechanismus beachtet werden müssen. Die hier vorgestellten Materialien sind ausschließlich für didaktische Zwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Überwachung des Handels mit Push-Benachrichtigungen — Beispiel für einen MetaTrader 5 Dienst

Überwachung des Handels mit Push-Benachrichtigungen — Beispiel für einen MetaTrader 5 Dienst

In diesem Artikel befassen wir uns mit der Erstellung einer Service-App für das Senden von Benachrichtigungen über Handelsergebnisse an ein Smartphone. Wir werden lernen, wie man mit Listen von Objekten der Standardbibliothek umgeht, um eine Auswahl von Objekten nach erforderlichen Eigenschaften zu organisieren.
preview
Algorithmus für eine auf künstlichen Ökosystemen basierende Optimierung (AEO)

Algorithmus für eine auf künstlichen Ökosystemen basierende Optimierung (AEO)

Der Artikel befasst sich mit einem metaheuristischen AEO-Algorithmus (Artificial Ecosystem-based Optimization), der Interaktionen zwischen Ökosystemkomponenten simuliert, indem er eine anfängliche Lösungspopulation erstellt und adaptive Aktualisierungsstrategien anwendet, und beschreibt im Detail die Phasen des AEO-Betriebs, einschließlich der Verbrauchs- und Zersetzungsphasen, sowie verschiedene Agentenverhaltensstrategien. Der Artikel stellt die Merkmale und Vorteile dieses Algorithmus vor.
preview
Der Kalman-Filter für Forex-Strategien der Rückkehr zur Mitte

Der Kalman-Filter für Forex-Strategien der Rückkehr zur Mitte

Der Kalman-Filter ist ein rekursiver Algorithmus, der im algorithmischen Handel verwendet wird, um den wahren Zustand einer Finanzzeitreihe durch Herausfiltern von Rauschen aus den Preisbewegungen zu schätzen. Er aktualisiert die Vorhersagen dynamisch auf der Grundlage neuer Marktdaten, was ihn für adaptive Strategien wie Mean Reversion wertvoll macht. In diesem Artikel wird zunächst der Kalman-Filter vorgestellt und seine Berechnung und Anwendung erläutert. Als nächstes wenden wir den Filter auf eine klassische Devisenstrategie, der Rückkehr zur Mitte, als Beispiel an. Schließlich führen wir verschiedene statistische Analysen durch, indem wir den Filter mit einem gleitenden Durchschnitt für verschiedene Devisenpaare vergleichen.
preview
Vom Neuling zum Experten: Support and Resistance Strength Indicator (SRSI)

Vom Neuling zum Experten: Support and Resistance Strength Indicator (SRSI)

In diesem Artikel erfahren Sie, wie Sie die MQL5-Programmierung nutzen können, um Marktniveaus zu bestimmen und zwischen schwächeren und stärkeren Kursniveaus zu unterscheiden. Wir werden einen funktionierenden Support and Resistance Strength Indicator (SRSI) entwickeln.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 21): Verbesserung des Handels mit neuronalen Netzen durch adaptive Lernraten

Automatisieren von Handelsstrategien in MQL5 (Teil 21): Verbesserung des Handels mit neuronalen Netzen durch adaptive Lernraten

In diesem Artikel verbessern wir eine Handelsstrategie mit neuronalen Netzen in MQL5 mit einer adaptiven Lernrate, um die Genauigkeit zu erhöhen. Wir entwerfen und implementieren diesen Mechanismus und testen anschließend seine Leistungsfähigkeit. Der Artikel schließt mit Optimierungserkenntnissen für den algorithmischen Handel.
preview
Die Grenzen des maschinellen Lernens überwinden (Teil 4): Überwindung des irreduziblen Fehlers durch mehrere Prognosehorizonte

Die Grenzen des maschinellen Lernens überwinden (Teil 4): Überwindung des irreduziblen Fehlers durch mehrere Prognosehorizonte

Maschinelles Lernen wird oft durch die Brille der Statistik oder der linearen Algebra betrachtet, aber dieser Artikel betont eine geometrische Perspektive der Modellvorhersagen. Sie zeigt, dass sich die Modelle dem Ziel nicht wirklich annähern, sondern es auf ein neues Koordinatensystem abbilden, was zu einer inhärenten Fehlausrichtung führt, die irreduzible Fehler zur Folge hat. In dem Artikel wird vorgeschlagen, dass mehrstufige Vorhersagen, bei denen die Prognosen des Modells über verschiedene Zeithorizonte hinweg verglichen werden, einen effektiveren Ansatz darstellen als direkte Vergleiche mit dem Ziel. Durch die Anwendung dieser Methode auf ein Handelsmodell zeigt der Artikel erhebliche Verbesserungen der Rentabilität und Genauigkeit, ohne das zugrunde liegende Modell zu verändern.
preview
Neuronale Netze leicht gemacht (Teil 94): Optimierung der Eingabereihenfolge

Neuronale Netze leicht gemacht (Teil 94): Optimierung der Eingabereihenfolge

Wenn wir mit Zeitreihen arbeiten, verwenden wir die Quelldaten immer in ihrer historischen Reihenfolge. Aber ist das die beste Option? Es besteht die Meinung, dass eine Änderung der Reihenfolge der Eingabedaten die Effizienz der trainierten Modelle verbessern wird. In diesem Artikel lade ich Sie ein, sich mit einer der Methoden zur Optimierung der Eingabereihenfolge vertraut zu machen.
preview
Beispiel einer Kausalitätsnetzwerkanalyse (CNA) und eines Vektor-Autoregressionsmodells zur Vorhersage von Marktereignissen

Beispiel einer Kausalitätsnetzwerkanalyse (CNA) und eines Vektor-Autoregressionsmodells zur Vorhersage von Marktereignissen

Dieser Artikel enthält eine umfassende Anleitung zur Implementierung eines ausgeklügelten Handelssystems unter Verwendung der Kausalitätsnetzwerkanalyse (Causality Network Analysis, CNA) und der Vektorautoregression (VAR) in MQL5. Es deckt den theoretischen Hintergrund dieser Methoden ab, bietet detaillierte Erklärungen der Schlüsselfunktionen im Handelsalgorithmus und enthält Beispielcode für die Implementierung.
preview
Neuronale Netze im Handel: Der Contrastive Muster-Transformer (letzter Teil)

Neuronale Netze im Handel: Der Contrastive Muster-Transformer (letzter Teil)

Im letzten Artikel dieser Reihe haben wir uns mit dem Atom-Motif Contrastive Transformer (AMCT) beschäftigt, der kontrastives Lernen zur Entdeckung von Schlüsselmustern auf allen Ebenen einsetzt, von grundlegenden Elementen bis hin zu komplexen Strukturen. In diesem Artikel setzen wir die Implementierung von AMCT-Ansätzen mit MQL5 fort.
preview
Die Gruppenmethode der Datenverarbeitung: Implementierung des mehrschichtigen iterativen Algorithmus in MQL5

Die Gruppenmethode der Datenverarbeitung: Implementierung des mehrschichtigen iterativen Algorithmus in MQL5

In diesem Artikel beschreiben wir die Implementierung des mehrschichtigen iterativen Algorithmus der Gruppenmethode der Datenverarbeitung in MQL5.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 18): Neuronale Architektursuche mit Eigenvektoren

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 18): Neuronale Architektursuche mit Eigenvektoren

Die Suche nach neuronaler Architektur, ein automatischer Ansatz zur Bestimmung der idealen Einstellungen für neuronale Netze, kann bei vielen Optionen und großen Testdatensätzen von Vorteil sein. Wir untersuchen, wie dieser Prozess bei gepaarten Eigenvektoren noch effizienter gestaltet werden kann.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 36): Q-Learning mit Markov-Ketten

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 36): Q-Learning mit Markov-Ketten

Reinforcement Learning ist neben dem überwachten und dem unüberwachten Lernen eine der drei Hauptrichtungen des maschinellen Lernens. Es geht also um die optimale Steuerung oder das Erlernen der besten langfristigen Strategie, die der Zielfunktion am besten entspricht. Vor diesem Hintergrund untersuchen wir die mögliche Rolle, die ein MLP für den Lernprozess eines von einem Assistenten zusammengestellten Expertenberaters spielt.
preview
Klassische Strategien neu interpretieren (Teil VIII): Währungsmärkte und Edelmetalle zum USDCAD

Klassische Strategien neu interpretieren (Teil VIII): Währungsmärkte und Edelmetalle zum USDCAD

In dieser Artikelserie nehmen wir bekannte Handelsstrategien unter die Lupe, um zu sehen, ob wir sie mithilfe von KI verbessern können. Testen Sie mit uns in der heutigen Diskussion, ob es eine zuverlässige Beziehung zwischen Edelmetallen und Währungen gibt.
preview
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 19): In Python implementierte Stufen erstellen

Entwicklung eines Expert Advisors für mehrere Währungen (Teil 19): In Python implementierte Stufen erstellen

Bisher haben wir die Automatisierung des Starts von sequentiellen Verfahren zur Optimierung von EAs ausschließlich im Standard-Strategietester betrachtet. Was aber, wenn wir zwischen diesen Starts die gewonnenen Daten mit anderen Mitteln bearbeiten wollen? Wir werden versuchen, die Möglichkeit hinzuzufügen, neue Optimierungsstufen zu erstellen, die von in Python geschriebenen Programmen ausgeführt werden.
preview
Erweiterte Speicherverwaltung und Optimierungstechniken in MQL5

Erweiterte Speicherverwaltung und Optimierungstechniken in MQL5

Entdecken Sie praktische Techniken zur Optimierung der Speichernutzung in MQL5-Handelssystemen. Lernen Sie, effiziente, stabile und schnell arbeitende Expert Advisors und Indikatoren zu erstellen. Wir werden untersuchen, wie der Speicher in MQL5 wirklich funktioniert, die häufigsten Fallen, die Ihre Systeme verlangsamen oder zum Ausfall führen, und - was am wichtigsten ist - wie man sie beheben kann.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 15): Den EA für den realen Handel vorbereiten

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 15): Den EA für den realen Handel vorbereiten

Wenn wir uns allmählich einem fertigen EA nähern, müssen wir auf Aspekte achten, die in der Phase des Testens einer Handelsstrategie zweitrangig erscheinen, aber wichtig werden, wenn wir zum echten Handel übergehen.
preview
Von der Grundstufe bis zur Mittelstufe: Das Array (I)

Von der Grundstufe bis zur Mittelstufe: Das Array (I)

Dieser Artikel stellt einen Übergang zwischen dem bisher Erörterten und einer neuen Phase der Forschung dar. Um diesen Artikel zu verstehen, müssen Sie die vorherigen Artikel lesen. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Selbstoptimierender Expert Advisor mit MQL5 und Python (Teil IV): Stacking-Modelle

Selbstoptimierender Expert Advisor mit MQL5 und Python (Teil IV): Stacking-Modelle

Heute werden wir Ihnen zeigen, wie Sie KI-gestützte Handelsanwendungen entwickeln können, die aus ihren eigenen Fehlern lernen. Wir werden eine Technik demonstrieren, die als Stacking bekannt ist und bei der wir 2 Modelle verwenden, um eine Vorhersage zu treffen. Das erste Modell ist in der Regel ein schwächerer Lerner, und das zweite Modell ist in der Regel ein leistungsfähigeres Modell, das die Residuen unseres schwächeren Lerners lernt. Unser Ziel ist es, ein Ensemble von Modellen zu erstellen, um hoffentlich eine höhere Genauigkeit zu erreichen.
preview
SQLite-Fähigkeiten in MQL5: Beispiel für ein Dashboard mit Handelsstatistiken nach Symbolen und magischen Zahlen

SQLite-Fähigkeiten in MQL5: Beispiel für ein Dashboard mit Handelsstatistiken nach Symbolen und magischen Zahlen

In diesem Artikel werden wir einen Indikator erstellen, der Handelsstatistiken auf einem Dashboard nach Konto, Symbolen und Handelsstrategien anzeigt. Wir werden den Code anhand von Beispielen aus der Dokumentation und dem Artikel über die Arbeit mit Datenbanken implementieren.
preview
Meistern der Log-Einträge (Teil 1): Grundlegende Konzepte und erste Schritte in MQL5

Meistern der Log-Einträge (Teil 1): Grundlegende Konzepte und erste Schritte in MQL5

Willkommen zum Beginn einer neuen Reise! Dieser Artikel eröffnet eine spezielle Serie, in der wir Schritt für Schritt eine Bibliothek für die Logmanipulation erstellen, die auf diejenigen zugeschnitten ist, die in der Sprache MQL5 entwickeln.
preview
Ensemble-Methoden zur Verbesserung numerischer Vorhersagen in MQL5

Ensemble-Methoden zur Verbesserung numerischer Vorhersagen in MQL5

In diesem Artikel stellen wir die Implementierung mehrerer Ensemble-Lernmethoden in MQL5 vor und untersuchen ihre Wirksamkeit in verschiedenen Szenarien.
preview
Einführung in MQL5 (Teil 13): Ein Anfängerleitfaden zur Erstellung nutzerdefinierter Indikatoren (II)

Einführung in MQL5 (Teil 13): Ein Anfängerleitfaden zur Erstellung nutzerdefinierter Indikatoren (II)

Dieser Artikel führt Sie durch die Erstellung eines nutzerdefinierten Heikin Ashi-Indikators von Grund auf und zeigt Ihnen, wie Sie Ihre nutzerdefinierte Indikatoren in einen EA integrieren können. Es umfasst Indikatorberechnungen, Handelsausführungslogik und Risikomanagementtechniken zur Verbesserung automatisierter Handelsstrategien.
preview
Aufbau eines Handelssystems (Teil 1): Ein quantitativer Ansatz

Aufbau eines Handelssystems (Teil 1): Ein quantitativer Ansatz

Viele Händler bewerten Strategien auf der Grundlage kurzfristiger Ergebnisse und geben profitable Systeme oft zu früh auf. Die langfristige Rentabilität hängt jedoch von einer positiven Erwartungshaltung durch eine optimierte Gewinnrate und ein optimiertes Risiko-Ertrags-Verhältnis ab, zusammen mit einer disziplinierten Positionsgröße. Diese Grundsätze können mit Hilfe von Monte-Carlo-Simulationen in Python mit bewährten Metriken validiert werden, um zu beurteilen, ob eine Strategie robust ist oder im Laufe der Zeit wahrscheinlich scheitern wird.
preview
Neuronale Netze im Handel: Verallgemeinerte 3D-Segmentierung von referenzierten Ausdrücken

Neuronale Netze im Handel: Verallgemeinerte 3D-Segmentierung von referenzierten Ausdrücken

Bei der Analyse der Marktsituation unterteilen wir den Markt in einzelne Segmente und ermitteln die wichtigsten Trends. Herkömmliche Analysemethoden konzentrieren sich jedoch oft auf einen Aspekt und schränken so die richtige Wahrnehmung ein. In diesem Artikel lernen wir eine Methode kennen, die die Auswahl mehrerer Objekte ermöglicht, um ein umfassenderes und vielschichtigeres Verständnis der Situation zu gewährleisten.
preview
Larry Connors‘ Strategien RSI2 Mean-Reversion im Day-Trading

Larry Connors‘ Strategien RSI2 Mean-Reversion im Day-Trading

Larry Connors ist ein renommierter Händler und Autor, der vor allem für seine Arbeit im Bereich des quantitativen Handels und für Strategien wie den 2-Perioden-RSI (RSI2) bekannt ist, der dabei hilft, kurzfristig überkaufte und überverkaufte Marktbedingungen zu erkennen. In diesem Artikel werden wir zunächst die Motivation für unsere Forschung erläutern, dann drei von Connors' berühmtesten Strategien in MQL5 nachbilden und sie auf den Intraday-Handel mit dem S&P 500 Index CFD anwenden.