Artikel über das Programmieren in MQL4 und MQL5

icon

Lernen Sie die Sprache von Handelsstrategien MQL5 nach den hier veröffentlichten Artikeln, die meisten von denen Sie - die Mitglieder der Community - geschrieben haben. Alle Artikel sind in drei Kategorien aufgeteilt, damit man eine Antwort auf unterschiedliche Fragen des Programmierens schnell finden könnte: "Integration", "Tester", "Handelsstrategien" und vieles mehr.

Verfolgen Sie neue Veröffentlichungen und diskutieren Sie über diese im Forum!

Neuer Artikel
letzte | beste
preview
Von der Grundstufe bis zur Mittelstufe: Arrays und Zeichenketten (I)

Von der Grundstufe bis zur Mittelstufe: Arrays und Zeichenketten (I)

Im heutigen Artikel werden wir uns mit einigen speziellen Datentypen befassen. Zu Beginn werden wir definieren, was eine Zeichenkette ist, und erklären, wie man einige grundlegende Verfahren anwendet. Dies ermöglicht uns die Arbeit mit dieser Art von Daten, die interessant, wenn auch für Anfänger manchmal etwas verwirrend sein kann. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Implementierung des kryptografischen SHA-256-Algorithmus von Grund auf in MQL5

Implementierung des kryptografischen SHA-256-Algorithmus von Grund auf in MQL5

Die Entwicklung DLL-freier Integrationen von Kryptowährungsbörsen war lange Zeit eine Herausforderung, aber diese Lösung bietet ein komplettes Framework für die direkte Marktanbindung.
preview
Meistern der Log-Einträge (Teil 4): Speichern der Protokolle in Dateien

Meistern der Log-Einträge (Teil 4): Speichern der Protokolle in Dateien

In diesem Artikel zeige ich Ihnen die grundlegenden Dateioperationen und wie Sie einen flexiblen Handler zur Anpassung konfigurieren. Wir werden die Klasse CLogifyHandlerFile aktualisieren, um Protokolle direkt in die Datei zu schreiben. Wir werden einen Leistungstest durchführen, indem wir eine Strategie für EURUSD eine Woche lang simulieren und bei jedem Tick Protokolle erstellen, mit einer Gesamtzeit von 5 Minuten und 11 Sekunden. Das Ergebnis wird in einem zukünftigen Artikel verglichen, in dem wir ein Caching-System zur Verbesserung der Leistung implementieren werden.
preview
Entwicklung eines Replay-Systems (Teil 67): Verfeinerung des Kontrollindikators

Entwicklung eines Replay-Systems (Teil 67): Verfeinerung des Kontrollindikators

In diesem Artikel werden wir uns ansehen, was mit ein wenig Code-Verfeinerung erreicht werden kann. Diese Verfeinerung zielt darauf ab, unseren Code zu vereinfachen, mehr Gebrauch von MQL5-Bibliotheksaufrufen zu machen und ihn vor allem viel stabiler, sicherer und einfacher in anderen Projekten zu verwenden, die wir in Zukunft entwickeln werden.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 12): Umsetzung der Strategie der Mitigation Order Blocks (MOB)

Automatisieren von Handelsstrategien in MQL5 (Teil 12): Umsetzung der Strategie der Mitigation Order Blocks (MOB)

In diesem Artikel bauen wir ein MQL5-Handelssystem auf, das die Orderblock-Erkennung für den Handel des Smart Money automatisiert. Wir skizzieren die Regeln der Strategie, implementieren die Logik in MQL5 und integrieren das Risikomanagement für eine effektive Handelsausführung. Schließlich führen wir Backtests durch, um die Leistung des Systems zu bewerten und es für optimale Ergebnisse zu verfeinern.
preview
Entwicklung eines Replay System (Teil 57): Verstehen eines Testdienstes

Entwicklung eines Replay System (Teil 57): Verstehen eines Testdienstes

Ein Hinweis: Obwohl der Code für einen Dienst in diesem Artikel nicht enthalten ist und erst im nächsten Artikel zur Verfügung gestellt wird, werde ich ihn erläutern, da wir denselben Code als Sprungbrett für unsere eigentliche Entwicklung verwenden werden. Seien Sie also aufmerksam und geduldig. Warten Sie auf den nächsten Artikel, denn jeden Tag wird es interessanter.
preview
Aufbau des Kerzenmodells Trend-Constraint (Teil 8): Entwicklung eines Expert Advisors (I)

Aufbau des Kerzenmodells Trend-Constraint (Teil 8): Entwicklung eines Expert Advisors (I)

In dieser Diskussion werden wir unseren ersten Expert Advisor in MQL5 erstellen, der auf dem Indikator basiert, den wir im vorherigen Artikel erstellt haben. Wir werden alle Funktionen abdecken, die erforderlich sind, um den Prozess zu automatisieren, einschließlich des Risikomanagements. Dies wird den Nutzern in hohem Maße zugute kommen, wenn sie von der manuellen Ausführung von Geschäften zu automatisierten Systemen übergehen.
preview
Algorithmus einer Anarchischen Gesellschaftsoptimierung (ASO)

Algorithmus einer Anarchischen Gesellschaftsoptimierung (ASO)

In diesem Artikel machen wir uns mit dem Algorithmus Anarchic Society Optimization (Anarchischen Gesellschaftsoptimierung, ASO) vertraut und erörtern, wie ein Algorithmus, der auf dem irrationalen und abenteuerlichen Verhalten von Teilnehmern in einer anarchischen Gesellschaft (einem anomalen System sozialer Interaktion, das frei von zentraler Macht und verschiedenen Arten von Hierarchien ist) basiert, in der Lage ist, den Lösungsraum zu erkunden und die Fallen des lokalen Optimums zu vermeiden. Der Artikel stellt eine einheitliche ASO-Struktur vor, die sowohl auf kontinuierliche als auch auf diskrete Probleme anwendbar ist.
preview
Vorhersage von Wechselkursen mit klassischen Methoden des maschinellen Lernens: Logit- und Probit-Modelle

Vorhersage von Wechselkursen mit klassischen Methoden des maschinellen Lernens: Logit- und Probit-Modelle

In diesem Artikel wird der Versuch unternommen, einen Handels-EA zur Vorhersage von Wechselkursen zu erstellen. Der Algorithmus basiert auf klassischen Klassifikationsmodellen - logistische und Probit-Regression. Das Kriterium des Wahrscheinlichkeitsquotienten wird als Filter für Handelssignale verwendet.
preview
Nutzung des CatBoost Machine Learning Modells als Filter für Trendfolgestrategien

Nutzung des CatBoost Machine Learning Modells als Filter für Trendfolgestrategien

CatBoost ist ein leistungsfähiges, baumbasiertes, maschinelles Lernmodell, das auf die Entscheidungsfindung auf der Grundlage stationärer Merkmale spezialisiert ist. Andere baumbasierte Modelle wie XGBoost und Random Forest haben ähnliche Eigenschaften in Bezug auf ihre Robustheit, ihre Fähigkeit, komplexe Muster zu verarbeiten, und ihre Interpretierbarkeit. Diese Modelle haben ein breites Anwendungsspektrum, das von der Merkmalsanalyse bis zum Risikomanagement reicht.
preview
Ensemble-Methoden zur Verbesserung numerischer Vorhersagen in MQL5

Ensemble-Methoden zur Verbesserung numerischer Vorhersagen in MQL5

In diesem Artikel stellen wir die Implementierung mehrerer Ensemble-Lernmethoden in MQL5 vor und untersuchen ihre Wirksamkeit in verschiedenen Szenarien.
preview
Neuronale Netze leicht gemacht (Teil 80): Graph Transformer Generative Adversarial Model (GTGAN)

Neuronale Netze leicht gemacht (Teil 80): Graph Transformer Generative Adversarial Model (GTGAN)

In diesem Artikel werde ich mich mit dem GTGAN-Algorithmus vertraut machen, der im Januar 2024 eingeführt wurde, um komplexe Probleme der Generierung von Architekturlayouts mit Graphenbeschränkungen zu lösen.
preview
Algorithmus für die künstliche, kooperative Suche (Artificial Cooperative Search, ACS)

Algorithmus für die künstliche, kooperative Suche (Artificial Cooperative Search, ACS)

Die künstliche, kooperative Suche (Artificial Cooperative Search, ACS) ist eine innovative Methode, bei der eine binäre Matrix und mehrere dynamische Populationen auf der Grundlage von wechselseitigen Beziehungen und Kooperation verwendet werden, um schnell und genau optimale Lösungen zu finden. Der einzigartige Ansatz von ACS in Bezug auf Räuber und Beute ermöglicht es, hervorragende Ergebnisse bei numerischen Optimierungsproblemen zu erzielen.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 8): Metrics Board

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 8): Metrics Board

Als eines der leistungsstärksten Toolkits zur Analyse von Preisaktionen wurde das „Metrics Board“ entwickelt, um die Marktanalyse zu rationalisieren, indem es wichtige Marktmetriken mit nur einem Mausklick bereitstellt. Jede Schaltfläche dient einer bestimmten Funktion, sei es die Analyse von Hoch-/Tief-Trends, Volumen oder anderen Schlüsselindikatoren. Dieses Tool liefert genaue Daten in Echtzeit, wenn Sie sie am meisten brauchen. In diesem Artikel wollen wir uns die Funktionen genauer ansehen.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 15): Einführung in die Quarters-Theorie (I) - Quarters Drawer Script

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 15): Einführung in die Quarters-Theorie (I) - Quarters Drawer Script

Unterstützungs- und Widerstandspunkte sind kritische Niveaus, die potenzielle Trendumkehr und -fortsetzungen signalisieren. Obwohl es schwierig sein kann, diese Niveaus zu identifizieren, sind Sie, wenn Sie sie einmal gefunden haben, gut vorbereitet, um sich auf dem Markt zurechtzufinden. Als weitere Hilfe können Sie das in diesem Artikel vorgestellte Tool „Quarters Drawer“ verwenden, mit dem Sie sowohl primäre als auch sekundäre Unterstützungs- und Widerstandsniveaus identifizieren können.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 37): Gaußsche Prozessregression mit linearen und Matérn-Kernel

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 37): Gaußsche Prozessregression mit linearen und Matérn-Kernel

Lineare Kernel sind die einfachste Matrix ihrer Art, die beim maschinellen Lernen für lineare Regression und Support Vector Machines verwendet wird. Der Matérn-Kernel hingegen ist eine vielseitigere Version der Radialbasisfunktion, die wir in einem früheren Artikel besprochen haben, und er eignet sich für die Abbildung von Funktionen, die nicht so glatt sind, wie es die RBF annehmen würde. Wir erstellen eine nutzerdefinierte Signalklasse, die beide Kernel für die Vorhersage von Long- und Short-Bedingungen verwendet.
preview
Hidden Markov Modelle für trendfolgende Volatilitätsprognosen

Hidden Markov Modelle für trendfolgende Volatilitätsprognosen

Hidden Markov Modelle (HMM) sind leistungsstarke statistische Instrumente, die durch die Analyse beobachtbarer Kursbewegungen die zugrunde liegenden Marktzustände identifizieren. Im Handel verbessern HMM die Volatilitätsprognose und liefern Informationen für Trendfolgestrategien, indem sie Marktverschiebungen modellieren und antizipieren. In diesem Artikel stellen wir das vollständige Verfahren zur Entwicklung einer Trendfolgestrategie vor, die HMM zur Prognose der Volatilität als Filter einsetzt.
preview
Integration von MQL5 mit Datenverarbeitungspaketen (Teil 3): Verbesserte Datenvisualisierung

Integration von MQL5 mit Datenverarbeitungspaketen (Teil 3): Verbesserte Datenvisualisierung

In diesem Artikel werden wir eine erweiterte Datenvisualisierung durchführen, indem wir über einfache Charts hinausgehen und Funktionen wie Interaktivität, geschichtete Daten und dynamische Elemente einbeziehen, die es Händlern ermöglichen, Trends, Muster und Korrelationen effektiver zu untersuchen.
preview
Meistern der Log-Einträge (Teil 1): Grundlegende Konzepte und erste Schritte in MQL5

Meistern der Log-Einträge (Teil 1): Grundlegende Konzepte und erste Schritte in MQL5

Willkommen zum Beginn einer neuen Reise! Dieser Artikel eröffnet eine spezielle Serie, in der wir Schritt für Schritt eine Bibliothek für die Logmanipulation erstellen, die auf diejenigen zugeschnitten ist, die in der Sprache MQL5 entwickeln.
preview
Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 2): Expert Advisor

Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 2): Expert Advisor

Dieser Artikel beschreibt den Aufbau eines adaptiven Expert Advisors (MarketRegimeEA) unter Verwendung des Regime-Detektors aus Teil 1. Er wechselt automatisch die Handelsstrategien und Risikoparameter für steigende, volatile oder Seitwärtsmärkte. Praktische Optimierung, Handhabung von Übergängen und ein Indikator für mehrere Zeitrahmen sind enthalten.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 32): Regularisierung

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 32): Regularisierung

Die Regularisierung ist eine Form der Bestrafung der Verlustfunktion im Verhältnis zur diskreten Gewichtung, die in den verschiedenen Schichten eines neuronalen Netzes angewendet wird. Wir sehen uns an, welche Bedeutung dies für einige der verschiedenen Regularisierungsformen in Testläufen mit einem vom Assistenten zusammengestellten Expert Advisor haben kann.
preview
Der Client im Connexus (Teil 7): Hinzufügen der Client-Schicht

Der Client im Connexus (Teil 7): Hinzufügen der Client-Schicht

In diesem Artikel setzen wir die Entwicklung der Bibliothek Connexus fort. In diesem Kapitel erstellen wir die Klasse CHttpClient, die für das Senden einer Anfrage und den Empfang eines Auftrags verantwortlich ist. Wir behandeln auch das Konzept von „Mocks“, wodurch die Bibliothek von der WebRequest-Funktion entkoppelt wird, was den Nutzern mehr Flexibilität bietet.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 35): Support-Vektor-Regression

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 35): Support-Vektor-Regression

Die Support-Vektor-Regression ist eine idealistische Methode, um eine Funktion oder „Hyperebene“ zu finden, die die Beziehung zwischen zwei Datensätzen am besten beschreibt. Wir versuchen, dies bei der Zeitreihenprognose innerhalb der nutzerdefinierten Klassen des MQL5-Assistenten auszunutzen.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 56): Bill Williams Fraktale

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 56): Bill Williams Fraktale

Die Fraktale von Bill Williams sind ein wirkungsvoller Indikator, der leicht übersehen wird, wenn man ihn zum ersten Mal auf einem Kurschart entdeckt. Er wirkt zu ereignisreich und wahrscheinlich nicht prägnant genug. Wir wollen den Vorhang über diesen Indikator lüften, indem wir untersuchen, was seine verschiedenen Muster bewirken könnten, wenn sie mit Vorwärtstests auf allen mit dem Assistenten zusammengestellten Expert Advisor untersucht werden.
preview
Entwicklung eines Replay System (Teil 34): Auftragssystem (III)

Entwicklung eines Replay System (Teil 34): Auftragssystem (III)

In diesem Artikel werden wir die erste Phase der Konstruktion abschließen. Obwohl dieser Teil recht schnell erledigt ist, werde ich auf Details eingehen, die zuvor nicht besprochen wurden. Ich werde einige Punkte erklären, die viele nicht verstehen. Wissen Sie, warum Sie die Umschalttaste oder die Strg-Taste drücken müssen?
preview
Künstlicher Bienenstock-Algorithmus (ABHA): Tests und Ergebnisse

Künstlicher Bienenstock-Algorithmus (ABHA): Tests und Ergebnisse

In diesem Artikel werden wir den Künstlichen Bienenstockalgorithmus (ABHA) weiter erforschen, indem wir in den Code eintauchen und die übrigen Methoden betrachten. Wie Sie sich vielleicht erinnern, wird jede Biene in diesem Modell als individueller Agent dargestellt, dessen Verhalten von internen und externen Informationen sowie von seinem Motivationszustand abhängt. Wir werden den Algorithmus an verschiedenen Funktionen testen und die Ergebnisse in der Bewertungstabelle zusammenfassen.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 33): Gauß-Prozess-Kerne

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 33): Gauß-Prozess-Kerne

Gaußsche Prozesskerne sind die Kovarianzfunktion der Normalverteilung, die bei der Vorhersage eine Rolle spielen können. Wir untersuchen diesen einzigartigen Algorithmus in einer nutzerdefinierten Signalklasse von MQL5, um zu sehen, ob er als erstklassiges Einstiegs- und Ausstiegssignal verwendet werden kann.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 9): Aufbau eines Expert Advisors für die asiatische Breakout-Strategie

Automatisieren von Handelsstrategien in MQL5 (Teil 9): Aufbau eines Expert Advisors für die asiatische Breakout-Strategie

In diesem Artikel erstellen wir einen Expert Advisor in MQL5 für die Asian Breakout Strategy, indem wir das Hoch und das Tief der Sitzung berechnen und die Trendfilterung mit einem gleitenden Durchschnitt anwenden. Wir implementieren ein dynamisches Objekt-Styling, nutzerdefinierte Zeitangaben und ein robustes Risikomanagement. Schließlich demonstrieren wir Techniken für Backtests und Optimierung zur Verfeinerung des Programms.
preview
Entwicklung eines Replay Systems (Teil 51): Die Dinge werden kompliziert (III)

Entwicklung eines Replay Systems (Teil 51): Die Dinge werden kompliziert (III)

In diesem Artikel werden wir uns mit einem der schwierigsten Probleme im Bereich der MQL5-Programmierung befassen: wie man eine Chart-ID korrekt erhält und warum Objekte manchmal nicht im Chart gezeichnet werden. Die hier vorgestellten Materialien sind ausschließlich für didaktische Zwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Ökonometrische Instrumente zur Prognose der Volatilität: das GARCH-Modell

Ökonometrische Instrumente zur Prognose der Volatilität: das GARCH-Modell

Der Artikel beschreibt die Eigenschaften des nichtlinearen Modells der bedingten Heteroskedastizität (GARCH). Der Indikator iGARCH wurde auf seiner Grundlage für die Vorhersage der Volatilität einen Schritt weiter entwickelt. Die numerische Analysebibliothek ALGLIB wird zur Schätzung der Modellparameter verwendet.
preview
Von der Grundstufe bis zur Mittelstufe: Arrays und Zeichenketten (II)

Von der Grundstufe bis zur Mittelstufe: Arrays und Zeichenketten (II)

In diesem Artikel werde ich zeigen, dass wir, obwohl wir uns noch in einem sehr grundlegenden Stadium der Programmierung befinden, bereits einige interessante Anwendungen realisieren können. In diesem Fall werden wir einen recht einfachen Passwortgenerator erstellen. Auf diese Weise werden wir in der Lage sein, einige der bisher erläuterten Konzepte anzuwenden. Darüber hinaus werden wir uns ansehen, wie Lösungen für einige spezifische Probleme entwickelt werden können.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 41): Deep-Q-Networks

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 41): Deep-Q-Networks

Das Deep-Q-Network ist ein Reinforcement-Learning-Algorithmus, der neuronale Netze bei der Projektion des nächsten Q-Wertes und der idealen Aktion während des Trainingsprozesses eines maschinellen Lernmoduls einsetzt. Wir haben bereits einen alternativen Verstärkungslernalgorithmus, Q-Learning, in Betracht gezogen. Dieser Artikel stellt daher ein weiteres Beispiel dafür vor, wie ein mit Reinforcement Learning trainierter MLP in einer nutzerdefinierten Signalklasse verwendet werden kann.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 16): Midnight Range Breakout mit der Preisaktion Break of Structure (BoS)

Automatisieren von Handelsstrategien in MQL5 (Teil 16): Midnight Range Breakout mit der Preisaktion Break of Structure (BoS)

In diesem Artikel automatisieren wir die Midnight Range Breakout mit Break of Structure Strategie in MQL5, indem wir den Code für die Breakout-Erkennung und die Handelsausführung detailliert beschreiben. Wir definieren präzise Risikoparameter für Einstieg, Stopp und Gewinn. Backtests und Optimierung sind für den praktischen Handel enthalten.
preview
Erstellen von selbstoptimierenden Expert Advisor in MQL5 (Teil 6): Selbstanpassende Handelsregeln (II)

Erstellen von selbstoptimierenden Expert Advisor in MQL5 (Teil 6): Selbstanpassende Handelsregeln (II)

Dieser Artikel befasst sich mit der Optimierung der RSI-Werte und -Perioden für bessere Handelssignale. Wir stellen Methoden zur Schätzung optimaler RSI-Werte vor und automatisieren die Periodenauswahl mithilfe von Rastersuche und statistischen Modellen. Schließlich implementieren wir die Lösung in MQL5 und setzen Python für die Analyse ein. Unser Ansatz ist pragmatisch und geradlinig, um Ihnen zu helfen, potenziell komplizierte Probleme auf einfache Weise zu lösen.
preview
Überwachung des Handels mit Push-Benachrichtigungen — Beispiel für einen MetaTrader 5 Dienst

Überwachung des Handels mit Push-Benachrichtigungen — Beispiel für einen MetaTrader 5 Dienst

In diesem Artikel befassen wir uns mit der Erstellung einer Service-App für das Senden von Benachrichtigungen über Handelsergebnisse an ein Smartphone. Wir werden lernen, wie man mit Listen von Objekten der Standardbibliothek umgeht, um eine Auswahl von Objekten nach erforderlichen Eigenschaften zu organisieren.
preview
Erforschung der Kryptographie in MQL5: Ein Schritt-für-Schritt-Ansatz

Erforschung der Kryptographie in MQL5: Ein Schritt-für-Schritt-Ansatz

Dieser Artikel befasst sich mit der Integration von Kryptographie in MQL5, wodurch die Sicherheit und Funktionalität von Handelsalgorithmen verbessert wird. Wir werden die wichtigsten kryptographischen Methoden und ihre praktische Umsetzung im automatisierten Handel behandeln.
preview
Entwicklung eines Replay Systems (Teil 50): Die Dinge werden kompliziert (II)

Entwicklung eines Replay Systems (Teil 50): Die Dinge werden kompliziert (II)

Wir werden das Problem der Chart-ID lösen und gleichzeitig dem Nutzer die Möglichkeit geben, eine persönliche Vorlage für die Analyse und Simulation des gewünschten Assets zu verwenden. Das hier vorgestellte Material dient ausschließlich didaktischen Zwecken und sollte in keiner Weise als Anwendung für einen anderen Zweck als das Studium und die Beherrschung der vorgestellten Konzepte betrachtet werden.
preview
Neuinterpretation klassischer Strategien in MQL5 (Teil II): FTSE100 und britische Staatsanleihen

Neuinterpretation klassischer Strategien in MQL5 (Teil II): FTSE100 und britische Staatsanleihen

In dieser Artikelserie untersuchen wir beliebte Handelsstrategien und versuchen, sie mithilfe von KI zu verbessern. Im heutigen Artikel greifen wir die klassische Handelsstrategie wieder auf, die auf der Beziehung zwischen dem Aktien- und dem Anleihemarkt basiert.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 5): Volatilitätsnavigator EA

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 5): Volatilitätsnavigator EA

Die Marktrichtung zu bestimmen kann einfach sein, aber zu wissen, wann man einsteigen sollte, kann eine Herausforderung sein. Im Rahmen der Serie „Entwicklung eines Toolkit zur Analyse von Preisaktionen" freue ich mich, ein weiteres Tool vorzustellen, das Einstiegspunkte, Take-Profit-Levels und Stop-Loss-Platzierungen bietet. Um dies zu erreichen, haben wir die Programmiersprache MQL5 verwendet. In diesem Artikel wollen wir die einzelnen Schritte näher erläutern.
preview
Neuronales Netz in der Praxis: Kleinste Quadrate

Neuronales Netz in der Praxis: Kleinste Quadrate

In diesem Artikel werden wir uns einige Ideen ansehen, u. a. dass mathematische Formeln im Aussehen komplexer sind als bei der Implementierung in Code. Außerdem werden wir uns damit beschäftigen, wie man einen Chart-Quadranten einrichtet, sowie mit einem interessanten Problem, das in Ihrem MQL5-Code auftreten kann. Obwohl ich, um ehrlich zu sein, immer noch nicht ganz verstehe, wie ich es erklären soll. Wie auch immer, ich zeige Ihnen, wie Sie das im Code beheben können.