Eine generische Optimierungsformulierung (GOF) zur Implementierung von Custom Max mit Nebenbedingungen
In diesem Artikel stellen wir Ihnen eine Möglichkeit vor, Optimierungsprobleme mit mehreren Zielen und Nebenbedingungen zu implementieren, wenn Sie „Custom max“ in der Registerkarte „Einstellungen“ des MetaTrader 5-Terminals auswählen. Das Optimierungsproblem könnte zum Beispiel lauten: Maximieren Sie den Gewinnfaktor, den Nettogewinn und den Erholungsfaktor, sodass der Drawdown weniger als 10 % beträgt, die Anzahl der aufeinanderfolgenden Verluste weniger als 5 und die Anzahl der Trades pro Woche mehr als 5 beträgt.
Grafiken in der Bibliothek DoEasy (Teil 100): Verbesserungen im Umgang mit erweiterten grafischen Standardobjekten
Im aktuellen Artikel werde ich offensichtliche Fehler bei der gleichzeitigen Behandlung von erweiterten (und Standard-) Grafikobjekten und Formularobjekten auf der Leinwand beseitigen sowie Fehler beheben, die bei dem im vorherigen Artikel durchgeführten Test entdeckt wurden. Der Artikel schließt diesen Teil der Bibliotheksbeschreibung ab.
DoEasy. Steuerung (Teil 10): WinForms-Objekte - Animieren der Nutzeroberfläche
Nun ist es an der Zeit, die grafische Oberfläche zu animieren, indem die Funktionsweise für die Interaktion von Objekten mit Nutzern und Objekten implementiert wird. Die neue Funktionsweise wird auch notwendig sein, damit komplexere Objekte korrekt funktionieren.
Die Handelsgeschäfte direkt auf dem Chart beurteilen, statt in der Handelshistorie unterzugehen
In diesem Artikel werden wir ein einfaches Tool für die bequeme Anzeige von Positionen und Handelsgeschäften direkt auf dem Chart mit Schlüsselnavigation erstellen. So können die Händler einzelne Handelsgeschäfte visuell prüfen und erhalten alle Informationen über die Handelsergebnisse direkt vor Ort.
Aufbau des Kerzenmodells Trend-Constraint (Teil 7): Verfeinerung unseres Modells für die EA-Entwicklung
In diesem Artikel werden wir uns mit der detaillierten Vorbereitung unseres Indikators für die Entwicklung von Expert Advisor (EA) befassen. Unsere Diskussion wird weitere Verfeinerungen der aktuellen Version des Indikators umfassen, um seine Genauigkeit und Funktionsweise zu verbessern. Außerdem werden wir neue Funktionen einführen, die Ausstiegspunkte markieren und damit eine Einschränkung der Vorgängerversion beheben, die nur Einstiegspunkte kennzeichnete.
Einführung in MQL5 (Teil 11): Eine Anleitung für Anfänger zur Arbeit mit integrierten Indikatoren in MQL5 (II)
Entdecken Sie, wie man einen Expert Advisor (EA) in MQL5 entwickelt, der mehrere Indikatoren wie RSI, MA und Stochastik-Oszillator verwendet, um versteckte steigende und fallende Divergenzen zu erkennen. Lernen Sie, ein effektives Risikomanagement zu implementieren und den Handel zu automatisieren - mit detaillierten Beispielen und vollständig kommentiertem Quellcode für Ausbildungszwecke!
Verständnis von Programmierparadigmen (Teil 2): Ein objektorientierter Ansatz für die Entwicklung eines Price Action Expert Advisors
Lernen Sie das objektorientierte Programmierparadigma und seine Anwendung im MQL5-Code kennen. Dieser zweite Artikel geht tiefer auf die Besonderheiten der objektorientierten Programmierung ein und bietet anhand eines praktischen Beispiels praktische Erfahrungen. Sie lernen, wie Sie unseren früher entwickelten prozeduralen Price Action Expert Advisor mit dem EMA-Indikator und Kursdaten der Kerzen in objektorientierten Code umwandeln können.
Entwicklung eines MQTT-Clients für MetaTrader 5: ein TDD-Ansatz — Finale
Dieser Artikel ist der letzte Teil einer Serie, die unsere Entwicklungsschritte für einen nativen MQL5-Client für das MQTT 5.0-Protokoll beschreibt. Obwohl die Bibliothek noch nicht produktionsreif ist, werden wir in diesem Teil unseren Client verwenden, um ein nutzerdefiniertes Symbol mit Ticks (oder Kursen) zu aktualisieren, die von einem anderen Broker stammen. Am Ende dieses Artikels finden Sie weitere Informationen über den aktuellen Status der Bibliothek, was ihr noch fehlt, um vollständig mit dem MQTT 5.0-Protokoll kompatibel zu sein, eine mögliche Roadmap und wie Sie die Entwicklung verfolgen und zu ihr beitragen können.
Aufbau des Kerzenmodells Trend-Constraint (Teil 5): Nachrichtensystem (Teil I)
Wir werden den Hauptcode von MQL5 in bestimmte Codeschnipsel aufteilen, um die Integration von Telegram und WhatsApp für den Empfang von Signalnachrichten von dem Trend Constraint-Indikator zu veranschaulichen, den wir in dieser Artikelserie erstellen. Dies wird sowohl Anfängern als auch erfahrenen Entwicklern helfen, das Konzept leicht zu verstehen. Zunächst werden wir die Einrichtung von MetaTrader 5 für Nachrichten und deren Bedeutung für den Nutzer behandeln. Dies wird den Entwicklern helfen, im Voraus Notizen zu machen, die sie dann in ihren Systemen anwenden können.
Selbstoptimierender Expert Advisor mit MQL5 und Python (Teil VI): Die Vorteile des tiefen doppelten Abstiegs nutzen
Das traditionelle maschinelle Lernen lehrt die Praktiker, darauf zu achten, dass ihre Modelle nicht übermäßig angepasst werden. Diese Ideologie wird jedoch durch neue Erkenntnisse in Frage gestellt, die von fleißigen Forschern aus Harvard veröffentlicht wurden, die herausgefunden haben, dass das, was als Überanpassung erscheint, unter Umständen das Ergebnis einer vorzeitigen Beendigung Ihrer Trainingsverfahren ist. Wir werden zeigen, wie wir die in der Forschungsarbeit veröffentlichten Ideen nutzen können, um unseren Einsatz von KI bei der Prognose von Ergebnissen zu verbessern.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 42): ADX-Oszillator
Der ADX ist ein weiterer relativ beliebter technischer Indikator, der von einigen Händlern verwendet wird, um die Stärke eines vorherrschenden Trends zu messen. Als Kombination von zwei anderen Indikatoren stellt er einen Oszillator dar, dessen Muster wir in diesem Artikel mit Hilfe der MQL5-Assistentengruppe und ihrer Unterstützungsklassen untersuchen.
Datenwissenschaft und ML (Teil 37): Mit Kerzenmustern und AI den Markt schlagen
Kerzenmuster helfen Händlern, die Marktpsychologie zu verstehen und Trends auf den Finanzmärkten zu erkennen. Sie ermöglichen fundiertere Handelsentscheidungen, die zu besseren Ergebnissen führen können. In diesem Artikel werden wir untersuchen, wie man Kerzenmuster mit KI-Modellen nutzen kann, um eine optimale Handelsperformance zu erzielen.
Stimmungsanalyse auf Twitter mit Sockets
Dieser innovative Trading-Bot integriert MetaTrader 5 mit Python, um die Stimmungsanalyse sozialer Medien in Echtzeit für automatisierte Handelsentscheidungen zu nutzen. Durch die Analyse der Twitter-Stimmung in Bezug auf bestimmte Finanzinstrumente übersetzt der Bot Trends in den sozialen Medien in umsetzbare Handelssignale. Es nutzt eine Client-Server-Architektur mit Socket-Kommunikation, die eine nahtlose Interaktion zwischen den Handelsfunktionen von MT5 und der Datenverarbeitungsleistung von Python ermöglicht.
Kategorientheorie in MQL5 (Teil 2)
Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der in der MQL-Gemeinschaft noch relativ unentdeckt ist. In dieser Artikelserie sollen einige der Konzepte vorgestellt und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die zu Kommentaren und Diskussionen anregt und hoffentlich die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung der Händler fördert.
Integration von ML-Modellen mit dem Strategy Tester (Teil 3): Verwaltung von CSV-Dateien (II)
Dieses Material bietet eine vollständige Anleitung zur Erstellung einer Klasse in MQL5 für die effiziente Verwaltung von CSV-Dateien. Wir werden die Implementierung von Methoden zum Öffnen, Schreiben, Lesen und Umwandeln von Daten sehen. Wir werden auch überlegen, wie wir sie zum Speichern und Abrufen von Informationen nutzen können. Darüber hinaus werden wir die Grenzen und die wichtigsten Aspekte bei der Verwendung einer solchen Klasse erörtern. Dieser Artikel kann eine wertvolle Ressource für diejenigen sein, die lernen wollen, wie man CSV-Dateien in MQL5 verarbeitet.
Algorithmen zur Optimierung mit Populationen: Evolution sozialer Gruppen (ESG)
Wir werden das Prinzip des Aufbaus von Algorithmen mit mehreren Populationen besprechen. Als Beispiel für diese Art von Algorithmus werden wir uns den neuen nutzerdefinierten Algorithmus - Evolution of Social Groups (ESG) - ansehen. Wir werden die grundlegenden Konzepte, die Mechanismen der Populationsinteraktion und die Vorteile dieses Algorithmus analysieren und seine Leistung bei Optimierungsproblemen untersuchen.
Saisonale Filterung und Zeitabschnitt für Deep Learning ONNX Modelle mit Python für EA
Können wir bei der Erstellung von Modellen für Deep Learning mit Python von der Saisonalität profitieren? Hilft das Filtern von Daten für die ONNX-Modelle, um bessere Ergebnisse zu erzielen? Welchen Zeitabschnitt sollten wir verwenden? Wir werden all dies in diesem Artikel behandeln.
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 16): Hauptkomponentenanalyse mit Eigenvektoren
Die Hauptkomponentenanalyse, ein Verfahren zur Verringerung der Dimensionalität in der Datenanalyse, wird in diesem Artikel untersucht, und es wird gezeigt, wie sie mit Eigenwerten und Vektoren umgesetzt werden kann. Wie immer streben wir die Entwicklung eines Prototyps einer Experten-Signal-Klasse an, die im MQL5-Assistenten verwendet werden kann.
Wirtschaftsprognosen: Erkunden des Potenzials von Python
Wie kann man die Wirtschaftsdaten der Weltbank für Prognosen nutzen? Was passiert, wenn man KI-Modelle und Wirtschaft kombiniert?
MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 71): Verwendung der Muster des MACD und des OBV
Die Oszillatoren Moving-Average-Convergence-Divergence (MACD) und On-Balance-Volume (OBV) sind ein weiteres Paar von Indikatoren, die in Verbindung mit einem MQL5 Expert Advisor verwendet werden können. Wie in dieser Artikelserie üblich, ist diese Paarung komplementär, wobei der MACD die Trends bestätigt, während der OBV das Volumen überprüft. Wie üblich verwenden wir den MQL5-Assistenten, um das Potenzial dieser beiden zu erstellen und zu testen.
Kategorientheorie in MQL5 (Teil 3)
Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der in der MQL-Gemeinschaft noch relativ unentdeckt ist. In dieser Artikelserie sollen einige der Konzepte vorgestellt und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die Einblicke gewährt und hoffentlich die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung von Händlern fördert.
DRAW_ARROW Zeichnungstyp in Multi-Symbol-Multi-Perioden-Indikatoren
In diesem Artikel werden wir uns mit Multi-Symbol-Multi-Perioden-Indikatoren beschäftigen, die Pfeile zeichnen. Wir werden auch die Klassenmethoden für die korrekte Anzeige von Pfeilen verbessern, die Daten von Pfeilindikatoren anzeigen, die auf einem Symbol/einer Periode berechnet wurden, das/die nicht mit dem Symbol/der Periode des aktuellen Charts übereinstimmt.
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil I): Aufbau einer Nachrichtenschnittstelle
Dieser Artikel beschreibt die Erstellung einer Nachrichtenschnittstelle (Messaging Interface) für MetaTrader 5, die sich an Systemadministratoren richtet, um die Kommunikation mit anderen Händlern direkt auf der Plattform zu erleichtern. Jüngste Integrationen von sozialen Plattformen mit MQL5 ermöglichen eine schnelle Signalübertragung über verschiedene Kanäle. Stellen Sie sich vor, Sie könnten gesendete Signale mit nur einem Klick validieren - entweder „JA“ oder „NEIN“ bzw. „YES“ or „NO“. Lesen Sie weiter, um mehr zu erfahren.
Selbstoptimierender Expert Advisor mit MQL5 und Python (Teil V): Tiefe Markov-Modelle
In dieser Diskussion werden wir eine einfache Markov-Kette auf einen RSI-Indikator anwenden, um zu beobachten, wie sich der Preis verhält, nachdem der Indikator wichtige Niveaus durchlaufen hat. Wir kamen zu dem Schluss, dass die stärksten Kauf- und Verkaufssignale für das NZDJPY-Paar entstehen, wenn der RSI im Bereich von 11-20 bzw. 71-80 liegt. Wir werden Ihnen zeigen, wie Sie Ihre Daten manipulieren können, um optimale Handelsstrategien zu erstellen, die direkt aus den vorhandenen Daten gelernt werden. Darüber hinaus wird demonstriert, wie ein tiefes neuronales Netz so trainiert werden kann, dass es lernt, die Übergangsmatrix optimal zu nutzen.
Datenwissenschaft und ML (Teil 28): Vorhersage mehrerer Futures für EURUSD mithilfe von KI
Bei vielen Modellen der künstlichen Intelligenz ist es üblich, einen einzigen Zukunftswert vorherzusagen. In diesem Artikel werden wir uns jedoch mit der leistungsstarken Technik der Verwendung von maschinellen Lernmodellen zur Vorhersage mehrerer zukünftiger Werte befassen. Dieser Ansatz, der als mehrstufige Prognose bekannt ist, ermöglicht es uns, nicht nur den Schlusskurs von morgen, sondern auch den von übermorgen und darüber hinaus vorherzusagen. Durch die Beherrschung mehrstufiger Prognosen können Händler und Datenwissenschaftler tiefere Einblicke gewinnen und fundiertere Entscheidungen treffen, was ihre Vorhersagefähigkeiten und strategische Planung erheblich verbessert.
DoEasy. Steuerung (Teil 6): Paneel-Steuerung, automatische Größenanpassung des Containers an den inneren Inhalt
In diesem Artikel werde ich meine Arbeit an dem WinForms-Objekt Panel fortsetzen und seine automatische Größenanpassung an die allgemeine Größe der Dock-Objekte, die sich innerhalb des Paneels befinden, implementieren. Außerdem werde ich die neuen Eigenschaften zum Objekt der Symbolbibliothek hinzufügen.
Risikomanager für den algorithmischen Handel
Ziel dieses Artikels ist es, die Notwendigkeit des Einsatzes eines Risikomanagers zu beweisen und die Prinzipien der Risikokontrolle im algorithmischen Handel in einer eigenen Klasse zu implementieren, damit jeder die Wirksamkeit des Ansatzes der Risikostandardisierung im Intraday-Handel und bei Investitionen auf den Finanzmärkten überprüfen kann. In diesem Artikel werden wir eine Risikomanager-Klasse für den algorithmischen Handel erstellen. Dies ist eine logische Fortsetzung des vorangegangenen Artikels, in dem wir die Erstellung eines Risikomanagers für den manuellen Handel besprochen haben.
Kausalanalyse von Zeitreihen mit Hilfe der Transferentropie
In diesem Artikel wird erörtert, wie die statistische Kausalität zur Ermittlung prädiktiver Variablen eingesetzt werden kann. Wir werden die Verbindung zwischen Kausalität und Transferentropie untersuchen und einen MQL5-Code zur Erkennung von direktionalen Informationsübertragungen zwischen zwei Variablen vorstellen.
Datenwissenschaft und maschinelles Lernen (Teil 14): Mit Kohonenkarten den Weg in den Märkten finden
Sind Sie auf der Suche nach einem innovativen Ansatz für den Handel, der Ihnen hilft, sich auf den komplexen und sich ständig verändernden Märkten zurechtzufinden? Kohonenkarten (Kohonen maps), eine innovative Form künstlicher neuronaler Netze, können Ihnen helfen, verborgene Muster und Trends in Marktdaten aufzudecken. In diesem Artikel werden wir untersuchen, wie Kohonenkarten funktionieren und wie sie zur Entwicklung intelligenter und effektiverer Handelsstrategien genutzt werden können. Egal, ob Sie ein erfahrener Trader sind oder gerade erst anfangen, Sie werden diesen aufregenden neuen Ansatz für den Handel nicht verpassen wollen.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 10): Erstellen von Objekten aus einer Zeichenkette
Der EA-Entwicklungsplan umfasst mehrere Stufen, wobei die Zwischenergebnisse in der Datenbank gespeichert werden. Sie können von dort nur als Zeichenketten oder Zahlen wieder abgerufen werden, nicht als Objekte. Wir brauchen also eine Möglichkeit, die gewünschten Objekte im EA anhand der aus der Datenbank gelesenen Strings neu zu erstellen.
Portfolio-Optimierung in Python und MQL5
Dieser Artikel befasst sich mit fortgeschrittenen Portfolio-Optimierungstechniken unter Verwendung von Python und MQL5 mit MetaTrader 5. Es wird gezeigt, wie Algorithmen für die Datenanalyse, die Vermögensallokation und die Generierung von Handelssignalen entwickelt werden können, wobei die Bedeutung datengestützter Entscheidungsfindung im modernen Finanzmanagement und bei der Risikominderung hervorgehoben wird.
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 19): ZigZag Analyzer
Jeder, der Preisaktionen handelt, verwendet Trendlinien manuell, um Trends zu bestätigen und potenzielle Wende- oder Fortsetzungsniveaus zu erkennen. In dieser Serie über die Entwicklung eines Preisaktionsanalyse-Toolkits stellen wir ein Tool vor, das sich auf das Zeichnen von schrägen Trendlinien zur einfachen Marktanalyse konzentriert. Dieses Tool vereinfacht den Prozess für Händler, indem es die wichtigsten Trends und Niveaus, die für eine wirksame Bewertung der Preisaktionen unerlässlich sind, klar umreißt.
Entwicklung eines Replay-Systems (Teil 68): Das richtige Bestimmen der Zeit (I)
Heute werden wir weiter daran arbeiten, dass der Mauszeiger uns anzeigt, wie viel Zeit in Zeiten geringer Liquidität noch auf einem Balken verbleibt. Obwohl es auf den ersten Blick einfach erscheint, ist diese Aufgabe in Wirklichkeit viel schwieriger. Dabei gibt es einige Hindernisse, die wir überwinden müssen. Daher ist es wichtig, dass Sie den ersten Teil dieser Teilserie gut verstehen, damit Sie die folgenden Teile verstehen können.
Entwicklung eines MQL5 RL-Agenten mit Integration von RestAPI (Teil 4): Organisieren von Funktionen in Klassen in MQL5
In diesem Artikel wird der Übergang von der prozeduralen Codierung zur objektorientierten Programmierung (OOP) in MQL5 mit Schwerpunkt auf der Integration mit der REST-API erörtert. Heute werden wir besprechen, wie HTTP-Anfragefunktionen (GET und POST) in Klassen organisiert werden können. Wir werden einen genaueren Blick auf das Refactoring von Code werfen und zeigen, wie isolierte Funktionen durch Klassenmethoden ersetzt werden können. Der Artikel enthält praktische Beispiele und Tests.
Algorithmen zur Optimierung mit Populationen: Binärer genetischer Algorithmus (BGA). Teil I
In diesem Artikel werden wir verschiedene Methoden untersuchen, die in binären genetischen und anderen Populationsalgorithmen verwendet werden. Wir werden uns die Hauptkomponenten des Algorithmus, wie Selektion, Crossover und Mutation, und ihre Auswirkungen auf die Optimierung ansehen. Darüber hinaus werden wir Methoden der Datendarstellung und ihre Auswirkungen auf die Optimierungsergebnisse untersuchen.
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 19): Bayes'sche Inferenz
Die Bayes'sche Inferenz ist die Anwendung des Bayes-Theorems, um die Wahrscheinlichkeitshypothese zu aktualisieren, wenn neue Informationen zur Verfügung stehen. Dies führt intuitiv zu einer Anpassung in der Zeitreihenanalyse, und so schauen wir uns an, wie wir dies bei der Erstellung von nutzerdefinierten Klassen nicht nur für das Signal, sondern auch für das Money-Management und Trailing-Stops nutzen können.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 16): Auswirkungen unterschiedlicher Kursverläufe auf die Testergebnisse
Es wird erwartet, dass der in der Entwicklung befindliche EA gute Ergebnisse beim Handel mit verschiedenen Brokern zeigt. Aber im Moment haben wir die Kurse eines MetaQuotes-Demokontos verwendet, um Tests durchzuführen. Lassen Sie uns sehen, ob unser EA bereit ist, auf einem Handelskonto mit anderen Kursen zu arbeiten, als die, die wir während der Tests und der Optimierung verwendet haben.
Kategorientheorie in MQL5 (Teil 6): Monomorphe Pullbacks und epimorphe Pushouts
Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der erst seit kurzem in der MQL5-Gemeinschaft Beachtung findet. In dieser Artikelserie sollen einige der Konzepte und Axiome erforscht und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die Einblicke gewährt und hoffentlich auch die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung von Händlern fördert.
Erstellen eines Administrator-Panels für den Handel in MQL5 (Teil III): Verbesserung der grafischen Nutzeroberfläche mit visuellem Styling (I)
In diesem Artikel werden wir uns auf die visuelle Gestaltung der grafischen Nutzeroberfläche (GUI) unseres Trading Administrator Panels mit MQL5 konzentrieren. Wir werden verschiedene in MQL5 verfügbare Techniken und Funktionen erkunden, die eine Anpassung und Optimierung der Schnittstelle ermöglichen, um sicherzustellen, dass sie den Bedürfnissen der Händler entspricht und gleichzeitig eine attraktive Ästhetik beibehält.
Neudefinition der Indikatoren von MQL5 und dem MetaTrader 5
Ein innovativer Ansatz zur Erfassung von Indikatorinformationen in MQL5 ermöglicht eine flexiblere und rationalisierte Datenanalyse, indem Entwickler nutzerdefinierte Eingaben an Indikatoren für sofortige Berechnungen weitergeben können. Dieser Ansatz ist besonders nützlich für den algorithmischen Handel, da er eine bessere Kontrolle über die von den Indikatoren verarbeiteten Informationen ermöglicht und über die traditionellen Beschränkungen hinausgeht.