Umstellung auf MQL5 Algo Forge (Teil 4): Arbeiten mit Versionen und Releases
Wir werden die Entwicklung der Projekte Simple Candles und Adwizard fortsetzen und dabei auch die feineren Aspekte der Verwendung des Versionskontrollsystems und des Repositorys von MQL5 Algo Forge beschreiben.
Entwicklung eines Replay-Systems (Teil 73): Eine ungewöhnliche Kommunikation (II)
In diesem Artikel werden wir uns ansehen, wie Informationen in Echtzeit zwischen dem Indikator und dem Dienst übertragen werden können, und wir werden auch verstehen, warum bei der Änderung des Zeitrahmens Probleme auftreten können und wie man sie lösen kann. Als Bonus erhalten Sie Zugang zur neuesten Version der Wiedergabe-/Simulations-App.
Von der Grundstufe bis zur Mittelstufe: Die Anweisungen BREAK und CONTINUE
In diesem Artikel sehen wir uns an, wie man die Anweisungen RETURN, BREAK und CONTINUE in einer Schleife verwendet. Für die Arbeit mit komplexeren Anwendungen ist es sehr wichtig zu verstehen, was die einzelnen Anweisungen im Ablauf der Schleifenausführung bewirken. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
Von der Grundstufe bis zur Mittelstufe: Templates und Typename (II)
In diesem Artikel wird erklärt, wie man mit einer der schwierigsten Programmiersituationen umgeht, die einem begegnen kann: die Verwendung verschiedener Typen in derselben Funktion oder Prozedur-Template. Obwohl wir uns die meiste Zeit nur auf Funktionen konzentriert haben, ist alles, was hier behandelt wurde, nützlich und kann auf Prozeduren angewendet werden.
Volumetrische neuronale Netzwerkanalyse als Schlüssel zu zukünftigen Trends
Der Artikel untersucht die Möglichkeit, die Preisprognose auf der Grundlage der Analyse des Handelsvolumens zu verbessern, indem die Prinzipien der technischen Analyse mit der Architektur des neuronalen Netzes LSTM integriert werden. Besonderes Augenmerk wird auf die Erkennung und Interpretation anomaler Volumina, die Verwendung von Clustern und die Erstellung von Merkmalen auf der Grundlage von Volumina und deren Definition im Rahmen des maschinellen Lernens gelegt.
Ein neuer Ansatz für nutzerdefinierte Kriterien in den Optimierungen (Teil 1): Beispiele für Aktivierungsfunktionen
Der erste einer Reihe von Artikeln, die sich mit der Mathematik der nutzerdefinierten Kriterien befassen, mit besonderem Schwerpunkt auf nichtlinearen Funktionen, die in neuronalen Netzen verwendet werden, MQL5-Code für die Implementierung und die Verwendung von gezielten und korrigierenden Offsets.
Entwicklung eines Toolkits zur Analyse von Preisaktionen (Teil 20): Externer Fluss (IV) - Correlation Pathfinder
Der Correlation Pathfinder bietet als Teil der Serie der Entwicklung eines Toolkits zur Analyse von Preisaktionen einen neuen Ansatz zum Verständnis der Dynamik von Währungspaaren. Dieses Tool automatisiert die Datenerfassung und -analyse und bietet einen Einblick in die Wechselwirkungen zwischen Paaren wie EUR/USD und GBP/USD. Verbessern Sie Ihre Handelsstrategie mit praktischen Echtzeit-Informationen, die Ihnen helfen, Risiken zu managen und Chancen effektiver zu erkennen.
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil X): Externe, ressourcenbasierte Schnittstelle
Heute machen wir uns die Möglichkeiten von MQL5 zunutze, um externe Ressourcen - wie Bilder im BMP-Format - zu nutzen und eine einzigartig gestaltete Nutzeroberfläche für das Trading Administrator Panel zu erstellen. Die hier gezeigte Strategie ist besonders nützlich, wenn mehrere Ressourcen, einschließlich Bilder, Töne und mehr, für eine rationelle Verteilung zusammengefasst werden. Nehmen Sie an dieser Diskussion teil und erfahren Sie, wie diese Funktionen implementiert werden, um eine moderne und visuell ansprechende Oberfläche für unser New_Admin_Panel EA zu schaffen.
Neuronales Netz in der Praxis: Pseudoinverse (II)
Da es sich bei diesen Artikeln um Lehrmaterial handelt und sie nicht dazu gedacht sind, die Implementierung bestimmter Funktionen zu zeigen, werden wir in diesem Artikel ein wenig anders vorgehen. Anstatt zu zeigen, wie man die Faktorisierung anwendet, um die Inverse einer Matrix zu erhalten, werden wir uns auf die Faktorisierung der Pseudoinverse konzentrieren. Der Grund dafür ist, dass es keinen Sinn macht, zu zeigen, wie man den allgemeinen Koeffizienten erhält, wenn man es auf eine spezielle Weise tun kann. Noch besser: Der Leser kann ein tieferes Verständnis dafür entwickeln, warum die Dinge so geschehen, wie sie geschehen. Lassen Sie uns nun herausfinden, warum die Hardware die Software im Laufe der Zeit ersetzt.
Einfache Lösungen für die komfortable Handhabung von Indikatoren
In diesem Artikel beschreibe ich, wie man ein einfaches Panel erstellt, um die Einstellungen des Indikators direkt im Chart zu ändern, und welche Änderungen am Indikator vorgenommen werden müssen, um das Panel zu verbinden. Dieser Artikel richtet sich an MQL5-Anfänger.
Neuronale Netze im Handel: Kontrollierte Segmentierung
In diesem Artikel wird eine Methode zur Analyse komplexer multimodaler Interaktionen und zum Verstehen von Merkmalen erörtert.
Entwicklung fortschrittlicher ICT-Handelssysteme: Implementierung von Signalen in den Indikator "Order Block"
In diesem Artikel erfahren Sie, wie Sie den Indikator „Order Block“ auf der Grundlage des Orderbuchvolumens (Markttiefe) entwickeln und ihn mithilfe von Puffern optimieren können, um die Genauigkeit zu verbessern. Damit ist die aktuelle Phase des Projekts abgeschlossen und die nächste Phase vorbereitet, die die Implementierung einer Risikomanagementklasse und eines Handelsroboters umfasst, der die vom Indikator generierten Signale nutzt.
Datenwissenschaft und ML (Teil 33): Pandas Dataframe in MQL5, Vereinfachung der Datensammlung für ML-Nutzung
Bei der Arbeit mit maschinellen Lernmodellen ist es wichtig, die Konsistenz der für Training, Validierung und Tests verwendeten Daten sicherzustellen. In diesem Artikel werden wir unsere eigene Version der Pandas-Bibliothek in MQL5 erstellen, um einen einheitlichen Ansatz für den Umgang mit maschinellen Lerndaten zu gewährleisten und sicherzustellen, dass innerhalb und außerhalb von MQL5, wo der Großteil des Trainings stattfindet, dieselben Daten verwendet werden.
Erstellen von selbstoptimierenden Expert Advisor in MQL5 (Teil 8): Analyse mehrerer Strategien
Wie können wir mehrere Strategien am besten kombinieren, um eine leistungsfähige Gesamtstrategie zu schaffen? Nehmen Sie an dieser Diskussion teil, in der wir drei verschiedene Strategien in unsere Handelsanwendung einbauen wollen. Händler verwenden oft spezielle Strategien für die Eröffnung und Schließung von Positionen, und wir wollen wissen, ob unsere Maschinen diese Aufgabe besser erfüllen können. In unserer einleitenden Diskussion machen wir uns mit den Fähigkeiten des Strategietesters und den Prinzipien der OOP vertraut, die wir für diese Aufgabe benötigen.
MetaTrader Tick-Info-Zugang von MQL5-Diensten zur Python-Anwendung über Sockets
Manchmal ist nicht alles in der MQL5-Sprache programmierbar. Und selbst wenn es möglich wäre, bestehende fortgeschrittene Bibliotheken in MQL5 zu konvertieren, wäre dies sehr zeitaufwändig. Dieser Artikel versucht zu zeigen, dass wir die Abhängigkeit vom Windows-Betriebssystem umgehen können, indem wir Tick-Informationen wie Bid, Ask und Time mit MetaTrader-Diensten über Sockets an eine Python-Anwendung übertragen.
Automatisieren von Handelsstrategien in MQL5 (Teil 23): Zone Recovery mit Trailing- und Basket-Logik
In diesem Artikel erweitern wir unser Zone Recovery System durch die Einführung von Trailing-Stops und Multi-Basket-Handelsfunktionen. Wir untersuchen, wie die verbesserte Architektur dynamische Trailing-Stops verwendet, um Gewinne zu sichern, und ein Basket-Management-System, um mehrere Handelssignale effizient zu verarbeiten. Durch Implementierung und Backtests demonstrieren wir ein robusteres Handelssystem, das auf eine adaptive Marktperformance zugeschnitten ist.
Entwicklung eines volatilitätsbasierten Ausbruchssystems
Das auf der Volatilität basierende Breakout-System identifiziert Marktbereiche und handelt dann, wenn der Preis über oder unter diese Niveaus bricht, gefiltert durch Volatilitätsmaße wie ATR. Dieser Ansatz hilft, starke Richtungsbewegungen zu erfassen.
Neuronale Netze leicht gemacht (Teil 96): Mehrskalige Merkmalsextraktion (MSFformer)
Die effiziente Extraktion und Integration von langfristigen Abhängigkeiten und kurzfristigen Merkmalen ist nach wie vor eine wichtige Aufgabe bei der Zeitreihenanalyse. Ihr richtiges Verständnis und ihre Integration sind notwendig, um genaue und zuverlässige Prognosemodelle zu erstellen.
Neuronale Netze im Handel: Optimierung des Transformers für Zeitreihenprognosen (LSEAttention)
Der LSEAttention-Rahmen bietet Verbesserungen der Transformer-Architektur. Es wurde speziell für langfristige multivariate Zeitreihenprognosen entwickelt. Die von den Autoren der Methode vorgeschlagenen Ansätze können angewandt werden, um Probleme des Entropiekollapses und der Lerninstabilität zu lösen, die bei einem einfachen Transformer häufig auftreten.
Neuronale Netze im Handel: Parametereffizienter Transformer mit segmentierter Aufmerksamkeit (letzter Teil)
In der vorangegangenen Arbeit haben wir die theoretischen Aspekte des PSformer-Rahmens erörtert, der zwei wichtige Neuerungen in der klassischen Transformer-Architektur beinhaltet: den Parameter-Shared (PS)-Mechanismus und die Berücksichtigung von räumlich-zeitlichen Segmenten (SegAtt). In diesem Artikel setzen wir die Arbeit fort, die wir bei der Implementierung der vorgeschlagenen Ansätze mit MQL5 begonnen haben.
Klassische Strategien neu interpretieren (Teil 14): Hochwahrscheinliche Setups
Hochwahrscheinliche Setups sind in unserer Trading-Community gut bekannt, aber leider sind sie nicht gut definiert. In diesem Artikel wollen wir einen empirischen und algorithmischen Weg finden, um genau zu definieren, was ein Hochwahrscheinlichkeits-Setup ist, und um diese zu identifizieren und auszunutzen. Durch die Verwendung von Gradient Boosting Trees haben wir gezeigt, wie der Leser die Leistung einer beliebigen Handelsstrategie verbessern und unserem Computer die genaue Aufgabe auf sinnvollere und explizitere Weise mitteilen kann.
Fortgeschrittene Algorithmen für die Auftragsausführung in MQL5: TWAP, VWAP und Eisberg-Aufträge
Ein MQL5-Framework, das den Algorithmus der Ausführung auf institutionellem Niveau (TWAP, VWAP, Iceberg) über einen einheitlichen Ausführungsmanager und einen Performance-Analysator für eine reibungslosere, präzisere Auftragsaufteilung und -analyse für Einzelhändler bereitstellt.
Automatisieren von Handelsstrategien in MQL5 (Teil 26): Aufbau eines Pin Bar Averaging Systems für den Handel mit mehreren Positionen
In diesem Artikel entwickeln wir ein Pin Bar Averaging-System in MQL5, das Pin Bar-Muster erkennt, um Handelsgeschäfte zu initiieren, und eine Averaging-Strategie für das Multipositionsmanagement einsetzt, die durch Trailing-Stops und Breakeven-Anpassungen ergänzt wird. Wir integrieren anpassbare Parameter mit einem Dashboard zur Echtzeitüberwachung von Positionen und Gewinnen.
Neuronale Netze im Handel: Ein Agent mit geschichtetem Speicher
Mehrschichtige Speicher, die die kognitiven Prozesse des Menschen nachahmen, ermöglichen die Verarbeitung komplexer Finanzdaten und die Anpassung an neue Signale, wodurch die Wirksamkeit von Anlageentscheidungen auf dynamischen Märkten verbessert wird.
Handel mit dem MQL5 Wirtschaftskalender (Teil 6): Automatisierung des Handelseinstiegs mit der Analyse von Nachrichtenereignissen und Countdown-Timern
In diesem Artikel implementieren wir einen automatischen Handelseinstieg mit dem MQL5-Wirtschaftskalender, indem wir nutzerdefinierte Filter und Zeitverschiebungen anwenden, um qualifizierte Nachrichtenereignisse zu identifizieren. Wir vergleichen die prognostizierten und die vorherigen Werte, um zu entscheiden, ob ein KAUF oder VERKAUF eröffnet werden soll. Dynamische Countdown-Timer zeigen die verbleibende Zeit bis zur Veröffentlichung von Nachrichten an und werden nach einem Handel automatisch zurückgesetzt.
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 16): Einführung in die Quarters Theory (II) - Intrusion Detector EA
In unserem letzten Artikel haben wir ein einfaches Skript namens „Quarters Drawer“ vorgestellt. Auf dieser Grundlage gehen wir nun den nächsten Schritt und erstellen einen Monitor Expert Advisor (EA), der diese Quarter verfolgt und einen Überblick über mögliche Marktreaktionen auf diesen Niveaus bietet. Begleiten Sie uns in diesem Artikel bei der Entwicklung eines Tools zur Zonenerkennung.
Datenwissenschaft und ML (Teil 34): Zeitreihenzerlegung, den Aktienmarkt auf den Kern herunterbrechen.
In einer Welt, die von verrauschten und unvorhersehbaren Daten überschwemmt wird, kann es schwierig sein, aussagekräftige Muster zu erkennen. In diesem Artikel befassen wir uns mit der saisonalen Dekomposition, einer leistungsstarken Analysetechnik, die dabei hilft, Daten in ihre Hauptkomponenten zu zerlegen: Trend, saisonale Muster und Rauschen. Wenn wir die Daten auf diese Weise aufschlüsseln, können wir verborgene Erkenntnisse aufdecken und mit klareren, besser interpretierbaren Informationen arbeiten.
Die Grenzen des maschinellen Lernens überwinden (Teil 2): Mangelnde Reproduzierbarkeit
Der Artikel geht der Frage nach, warum die Handelsergebnisse bei verschiedenen Brokern selbst bei Verwendung derselben Strategie und desselben Finanzsymbols aufgrund dezentraler Preisfestsetzung und Datenabweichungen erheblich voneinander abweichen können. Der Artikel hilft MQL5-Entwicklern zu verstehen, warum ihre Produkte auf dem MQL5-Marktplatz gemischte Bewertungen erhalten können, und fordert die Entwickler auf, ihre Ansätze auf bestimmte Makler zuzuschneiden, um transparente und reproduzierbare Ergebnisse zu gewährleisten. Dies könnte sich zu einer wichtigen bereichsgebundenen Best Practice entwickeln, die unserer Gemeinschaft gute Dienste leisten würde, wenn sie auf breiter Ebene übernommen würde.
Erstellen von dynamischen MQL5-Grafikschnittstellen durch ressourcengesteuerte Bildskalierung mit bikubischer Interpolation auf Handelscharts
In diesem Artikel erforschen wir dynamische MQL5-Grafikschnittstellen, die bikubische Interpolation für hochwertige Bildskalierung auf Handelscharts verwenden. Wir stellen flexible Positionierungsoptionen vor, die eine dynamische Zentrierung oder Eckverankerung mit nutzerdefinierten Versätzen ermöglichen.
Die Grenzen des maschinellen Lernens überwinden (Teil 1): Mangel an interoperablen Metriken
Es gibt eine mächtige und allgegenwärtige Kraft, die die kollektiven Bemühungen unserer Gemeinschaft, verlässliche Handelsstrategien zu entwickeln, die KI in irgendeiner Form einsetzen, leise untergräbt. In diesem Artikel wird festgestellt, dass ein Teil der Probleme, mit denen wir konfrontiert sind, auf das blinde Festhalten an „Best Practices“ zurückzuführen ist. Indem wir dem Leser einfache marktbasierte Beweise aus der realen Welt vorlegen, werden wir ihm erklären, warum wir von einem solchen Verhalten absehen und stattdessen bereichsgebundene „Best Practices“ anwenden müssen, wenn unsere Gemeinschaft eine Chance haben soll, das latente Potenzial der KI zu nutzen.
Vom Neuling zum Experten: Animierte Nachrichten-Schlagzeile mit MQL5 (IV) – Markteinsichten durch lokal verfügbare KI-Modelle
In der heutigen Diskussion untersuchen wir, wie man Open-Source-KI-Modelle selbst hosten und zur Gewinnung von Markteinblicken nutzen kann. Dies ist Teil unserer laufenden Bemühungen, den News Headline EA zu erweitern, indem wir einen AI Info-Streifen einführen, die ihn in ein Multi-Integrations-Assistenz-Tool verwandelt. Der aktualisierte EA zielt darauf ab, Händler durch Kalenderereignisse, aktuelle Finanznachrichten, technische Indikatoren und jetzt auch durch KI-generierte Marktperspektiven auf dem Laufenden zu halten - und bietet so zeitnahe, vielfältige und intelligente Unterstützung für Handelsentscheidungen. Seien Sie dabei, wenn wir praktische Integrationsstrategien erforschen und untersuchen, wie MQL5 mit externen Ressourcen zusammenarbeiten kann, um ein leistungsstarkes und intelligentes Arbeitsterminal für den Handel aufzubauen.
Aufbau von KI-gesteuerten Handelssystemen in MQL5 (Teil 1): Implementierung der JSON-Verarbeitung für KI-APIs
In diesem Artikel entwickeln wir ein System des JSON-Parsing in MQL5, um den Datenaustausch für die KI-API-Integration zu handhaben, wobei wir uns auf eine JSON-Klasse zur Verarbeitung von JSON-Strukturen konzentrieren. Wir implementieren Methoden zur Serialisierung und Deserialisierung von JSON-Daten, die verschiedene Datentypen wie Strings, Zahlen und Objekte unterstützen. Dies ist für die Kommunikation mit KI-Diensten wie ChatGPT unerlässlich und ermöglicht zukünftige KI-gesteuerte Handelssysteme, indem es eine genaue Datenverarbeitung und -manipulation gewährleistet.
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil V): Zwei-Faktoren-Authentifizierung (2FA)
Heute werden wir uns mit der Verbesserung der Sicherheit für das derzeit in der Entwicklung befindliche Trading Administrator Panel befassen. Wir werden untersuchen, wie MQL5 in eine neue Sicherheitsstrategie implementiert werden kann, indem die Telegram-API für die Zwei-Faktor-Authentifizierung (2FA) verwendet wird. Diese Diskussion wird wertvolle Einblicke in die Anwendung von MQL5 bei der Verstärkung von Sicherheitsmaßnahmen liefern. Darüber hinaus werden wir die Funktion MathRand untersuchen, wobei wir uns auf ihre Funktionalität konzentrieren werden und darauf, wie sie innerhalb unseres Sicherheitsrahmens effektiv genutzt werden kann. Lesen Sie weiter, um mehr zu erfahren!
Klassische Strategien neu interpretieren (Teil 14): Hochwahrscheinliche Setups
Hochwahrscheinliche Setups sind in unserer Trading-Community gut bekannt, aber leider sind sie nicht gut definiert. In diesem Artikel wollen wir einen empirischen und algorithmischen Weg finden, um genau zu definieren, was ein Hochwahrscheinlichkeits-Setup ist, und um diese zu identifizieren und auszunutzen. Durch die Verwendung von Gradient Boosting Trees haben wir gezeigt, wie der Leser die Leistung einer beliebigen Handelsstrategie verbessern und unserem Computer die genaue Aufgabe auf sinnvollere und explizitere Weise mitteilen kann.
Neuronale Netze im Handel: Der Contrastive Muster-Transformer
Der Contrastive Transformer wurde entwickelt, um Märkte sowohl auf der Ebene einzelner Kerzen als auch auf der Basis ganzer Muster zu analysieren. Dies trägt dazu bei, die Qualität der Modellierung von Markttrends zu verbessern. Darüber hinaus fördert der Einsatz des kontrastiven Lernens zum Abgleich der Darstellungen von Kerzen und Mustern die Selbstregulierung und verbessert die Genauigkeit der Prognosen.
Arithmetischer Optimierungsalgorithmus (AOA): Von AOA zu SOA (Simpler Optimierungsalgorithmus)
In diesem Artikel stellen wir den Arithmetischen Optimierungsalgorithmus (AOA) vor, der auf einfachen arithmetischen Operationen basiert: Addition, Subtraktion, Multiplikation und Division. Diese grundlegenden mathematischen Operationen dienen als Grundlage für die Suche nach optimalen Lösungen für verschiedene Probleme.
Handel mit dem MQL5 Wirtschaftskalender (Teil 8): Optimierung des nachrichtengesteuerten Backtests mit intelligenter Ereignisfilterung und gezielten Protokollen
In diesem Artikel optimieren wir unseren Wirtschaftskalender mit intelligenter Ereignisfilterung und gezielter Protokollierung für ein schnelleres, klareres Backtests im Live- und Offline-Modus. Wir rationalisieren die Ereignisverarbeitung und konzentrieren die Protokolle auf kritische Handels- und Dashboard-Ereignisse, um die Strategievisualisierung zu verbessern. Diese Verbesserungen ermöglichen ein nahtloses Testen und Verfeinern von nachrichtengesteuerten Handelsstrategien.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 64): Verwendung von Mustern von DeMarker und Envelope-Kanälen mit dem Kernel des weißen Rauschens
Der DeMarker-Oszillator und der Envelopes-Indikator sind Momentum- und Unterstützungs-/Widerstands-Tools, die bei der Entwicklung eines Expert Advisors kombiniert werden können. Wir knüpfen an unseren letzten Artikel an, in dem diese beiden Indikatoren vorgestellt wurden, indem wir das maschinelle Lernen in den Mix aufnehmen. Wir verwenden ein rekurrentes neuronales Netz, das den Kernel des weißen Rauschens nutzt, um die vektorisierten Signale dieser beiden Indikatoren zu verarbeiten. Dies geschieht in einer nutzerdefinierten Signalklassendatei, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.
MQL5-Handelswerkzeuge (Teil 7): Informatives Dashboard für Multi-Symbol-Positionen und Kontoüberwachung
In diesem Artikel entwickeln wir ein Informations-Dashboard in MQL5 zur Überwachung von Multi-Symbol-Positionen und Kontometriken wie Kontostand, Kapital und freie Marge. Wir implementieren ein sortierbares Raster mit Echtzeit-Updates, CSV-Export und einen leuchtenden Header-Effekt, um die Nutzerfreundlichkeit und den visuellen Reiz zu verbessern.
Entwicklung eines Replay-Systems (Teil 65): Abspielen des Dienstes (VI)
In diesem Artikel werden wir uns ansehen, wie das Mauszeigerproblem bei der Verwendung in Verbindung mit einer Wiedergabe-/Simulationsanwendung implementiert und gelöst werden kann. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.