Automatisieren von Handelsstrategien in MQL5 (Teil 30): Erstellen eines harmonischen AB-CD-Preisaktionsmusters mit visuellem Feedback
In diesem Artikel entwickeln wir einen AB=CD Pattern EA in MQL5, der harmonische Auf- und Abwärtsmuster von AB=CD mit Hilfe von Umkehrpunkten und Fibonacci-Ratios identifiziert und Trades mit präzisen Einstiegs-, Stop-Loss- und Take-Profit-Levels ausführt. Wir verbessern den Einblick des Händlers mit visuellem Feedback durch Chart-Objekte.
Neuronale Netze im Handel: Das „Dual-Attention-Based Trend Prediction Model“
Wir setzen die Diskussion über die Verwendung der stückweisen, linearen Darstellung von Zeitreihen fort, die im vorherigen Artikel begonnen wurde. Heute werden wir sehen, wie diese Methode mit anderen Ansätzen der Zeitreihenanalyse kombiniert werden kann, um die Qualität der Vorhersage des Preistrend zu verbessern.
Klassische Strategien neu interpretieren (Teil V): Analyse mehrerer Symbole für USDZAR
In dieser Artikelserie überprüfen wir klassische Strategien, um herauszufinden, ob wir die Strategie mithilfe von KI verbessern können. Im heutigen Artikel werden wir eine beliebte Strategie der Mehrfachsymbolanalyse anhand eines Korbs korrelierter Wertpapiere untersuchen, wobei wir uns auf das exotische Währungspaar USDZAR konzentrieren werden.
Anfragen in Connexus (Teil 6): Erstellen einer HTTP-Anfrage und -Antwort
In diesem sechsten Artikel der Connexus-Bibliotheksreihe befassen wir uns mit einer vollständigen HTTP-Anfrage, wobei jede Komponente, aus der eine Anfrage besteht, behandelt wird. Wir werden eine Klasse erstellen, die den Anfrage als Ganzes repräsentiert, was uns helfen wird, die zuvor erstellten Klassen zusammenzuführen.
Integration von Discord mit MetaTrader 5: Aufbau eines Handels-Bots mit Echtzeit-Benachrichtigungen
In diesem Artikel wird gezeigt, wie MetaTrader 5 und ein Discord-Server integriert werden können, um Handelsbenachrichtigungen in Echtzeit von jedem Ort aus zu erhalten. Wir werden sehen, wie man die Plattform und Discord konfiguriert, um die Übermittlung von Benachrichtigungen an Discord zu ermöglichen. Wir werden auch Sicherheitsfragen behandeln, die im Zusammenhang mit der Verwendung von WebRequests und Webhooks für solche Alarmierungslösungen auftreten.
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (III): Kommunikationsmodul
Nehmen Sie an einer ausführlichen Diskussion über die neuesten Fortschritte im MQL5-Schnittstellendesign teil, wenn wir das neu gestaltete Kommunikations-Panel vorstellen und unsere Serie über den Aufbau des neuen Admin-Panels unter Verwendung von Modularisierungsprinzipien fortsetzen. Wir werden die Klasse CommunicationsDialog Schritt für Schritt entwickeln und ausführlich erklären, wie man sie von der Klasse Dialog erbt. Außerdem werden wir Arrays und die ListView-Klasse in unserer Entwicklung nutzen. Gewinnen Sie umsetzbare Erkenntnisse, um Ihre MQL5-Entwicklungsfähigkeiten zu verbessern - lesen Sie den Artikel und beteiligen Sie sich an der Diskussion im Kommentarbereich!
Analyse mehrerer Symbole mit Python und MQL5 (Teil 3): Dreieck der Wechselkurse
Händler sehen sich oft mit Drawdowns aufgrund falscher Signale konfrontiert, während das Warten auf eine Bestätigung zu verpassten Chancen führen kann. In diesem Artikel wird eine dreieckige Handelsstrategie vorgestellt, die den Silberpreis in Dollar (XAGUSD) und Euro (XAGEUR) zusammen mit dem EURUSD-Wechselkurs verwendet, um das Rauschen herauszufiltern. Durch die Nutzung marktübergreifender Beziehungen können Händler versteckte Stimmungen aufdecken und ihre Eingaben in Echtzeit verfeinern.
Datenwissenschaft und ML (Teil 35): NumPy in MQL5 - Die Kunst, komplexe Algorithmen mit weniger Code zu erstellen
Die NumPy-Bibliothek treibt fast alle Algorithmen des maschinellen Lernens in der Programmiersprache Python an. In diesem Artikel werden wir ein ähnliches Modul implementieren, das eine Sammlung des gesamten komplexen Codes enthält, um uns bei der Erstellung anspruchsvoller Modelle und Algorithmen jeglicher Art zu unterstützen.
Klassische Strategien neu interpretieren (Teil 14): Analyse mehrerer Strategien
In diesem Artikel setzen wir unsere Erforschung der Erstellung eines Ensembles von Handelsstrategien und der Verwendung des MT5 genetischen Optimierers zur Abstimmung der Strategieparameter fort. Heute haben wir die Daten in Python analysiert. Dabei hat sich gezeigt, dass unser Modell besser vorhersagen kann, welche Strategie besser abschneiden wird, und eine höhere Genauigkeit erreicht als die direkte Vorhersage der Marktrenditen. Als wir unsere Anwendung jedoch mit ihren statistischen Modellen testeten, fielen unsere Leistungswerte drastisch ab. In der Folge stellten wir fest, dass der genetische Optimierer leider stark korrelierte Strategien bevorzugte, was uns dazu veranlasste, unsere Methode zu überarbeiten, um die Stimmgewichte fest zu halten und die Optimierung stattdessen auf Indikatoreinstellungen zu konzentrieren.
Vom Neuling zum Experten: Animierte Nachrichtenüberschrift mit MQL5 (IX) – Verwaltung mehrerer Symbole in einem einzigen Chart für den Nachrichtenhandel
Der Handel mit Nachrichten erfordert aufgrund der erhöhten Volatilität häufig die Verwaltung mehrerer Positionen und Symbole in sehr kurzer Zeit. In der heutigen Diskussion gehen wir auf die Herausforderungen des Multi-Symbol-Handels ein, indem wir diese Funktion in unseren News Headline EA integrieren. Seien Sie dabei, wenn wir untersuchen, wie der algorithmische Handel mit MQL5 den Multi-Symbol-Handel effizienter und leistungsfähiger macht.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 14): Adaptive Volumenänderung im Risikomanager
Der zuvor entwickelte Risikomanager enthielt nur grundlegende Funktionen. Versuchen wir, mögliche Wege zu seiner Entwicklung zu betrachten, die es uns ermöglichen, die Handelsergebnisse zu verbessern, ohne die Logik der Handelsstrategien zu beeinträchtigen.
Optimierungsmethoden der ALGLIB-Bibliothek (Teil I)
In diesem Artikel werden wir uns mit den Optimierungsmethoden der ALGLIB-Bibliothek für MQL5 vertraut machen. Der Artikel enthält einfache und anschauliche Beispiele für die Verwendung von ALGLIB zur Lösung von Optimierungsproblemen, die das Erlernen der Methoden so einfach wie möglich machen. Wir werden uns die Verbindung von Algorithmen wie BLEIC, L-BFGS und NS im Detail ansehen und sie zur Lösung eines einfachen Testproblems verwenden.
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 4): Der Analytik Forecaster EA
Wir gehen über die einfache Darstellung von analysierten Metriken in Charts hinaus und bieten eine breitere Perspektive, die auch die Integration von Telegram umfasst. Mit dieser Erweiterung können wichtige Ergebnisse über die Telegram-App direkt auf Ihr mobiles Gerät geliefert werden. Begleiten Sie uns in diesem Artikel auf dieser gemeinsamen Reise.
Entwicklung eines Wiedergabesystems (Teil 47): Chart Trade Projekt (VI)
Schließlich beginnt unser Indikator Chart Trade mit dem EA zu interagieren, sodass die Informationen interaktiv übertragen werden können. Daher werden wir in diesem Artikel den Indikator verbessern, sodass er funktional genug ist, um zusammen mit jedem EA verwendet zu werden. Dadurch können wir auf den Indikator Chart Trade zugreifen und mit ihm arbeiten, als ob er tatsächlich mit einem EA verbunden wäre. Aber wir werden es auf eine viel interessantere Weise tun als bisher.
Vom Neuling zum Experten: Animierte Nachrichtenüberschrift mit MQL5 (II)
Heute machen wir einen weiteren Schritt nach vorn, indem wir eine externe Nachrichten-API als Quelle für Schlagzeilen in unseren News Headline EA integrieren. In dieser Phase werden wir verschiedene Nachrichtenquellen – sowohl etablierte als auch neue – untersuchen und lernen, wie wir effektiv auf ihre APIs zugreifen können. Wir werden auch Methoden zum Parsen der abgerufenen Daten in ein Format behandeln, das für die Anzeige in unserem Expert Advisor optimiert ist. Nehmen Sie an der Diskussion teil und erfahren Sie mehr über die Vorteile des Zugriffs auf Schlagzeilen und den Wirtschaftskalender direkt auf dem Chart, und das alles über eine kompakte, nicht störende Schnittstelle.
Automatisieren von Handelsstrategien in MQL5 (Teil 25): Trendlinien-Händler mit der Anpassung der kleinsten Quadrate und dynamischer Signalgenerierung
In diesem Artikel entwickeln wir ein Trendlinien-Handelsprogramm, das die kleinsten Quadrate verwendet, um Unterstützungs- und Widerstandstrendlinien zu erkennen, dynamische Kauf- und Verkaufssignale auf der Grundlage von Preisberührungen zu erzeugen und Positionen auf der Grundlage der erzeugten Signale zu eröffnen.
Neuronales Netz in der Praxis: Kleinste Quadrate
In diesem Artikel werden wir uns einige Ideen ansehen, u. a. dass mathematische Formeln im Aussehen komplexer sind als bei der Implementierung in Code. Außerdem werden wir uns damit beschäftigen, wie man einen Chart-Quadranten einrichtet, sowie mit einem interessanten Problem, das in Ihrem MQL5-Code auftreten kann. Obwohl ich, um ehrlich zu sein, immer noch nicht ganz verstehe, wie ich es erklären soll. Wie auch immer, ich zeige Ihnen, wie Sie das im Code beheben können.
Neuinterpretation klassischer Strategien in MQL5 (Teil II): FTSE100 und britische Staatsanleihen
In dieser Artikelserie untersuchen wir beliebte Handelsstrategien und versuchen, sie mithilfe von KI zu verbessern. Im heutigen Artikel greifen wir die klassische Handelsstrategie wieder auf, die auf der Beziehung zwischen dem Aktien- und dem Anleihemarkt basiert.
Portfolio-Optimierung am Devisenmarkt: Synthese von VaR und die Markowitz-Theorie
Wie funktioniert der Portfoliohandel im Forexmarkt? Wie lassen sich die Portfoliotheorie von Markowitz zur Optimierung des Portfolioanteils und das VaR-Modell zur Optimierung des Portfoliorisikos zusammenführen? Wir erstellen einen auf der Portfoliotheorie basierenden Code, der einerseits ein geringes Risiko und andererseits eine akzeptable langfristige Rentabilität gewährleistet.
Datenwissenschaft und ML (Teil 38): AI Transfer Learning auf den Forexmärkten
Die KI-Durchbrüche, die die Schlagzeilen beherrschen, von ChatGPT bis hin zu selbstfahrenden Autos, entstehen nicht durch isolierte Modelle, sondern durch kumulatives Wissen, das aus verschiedenen Modellen oder gemeinsamen Bereichen übertragen wird. Jetzt kann derselbe Ansatz "einmal lernen, überall anwenden" angewandt werden, um unsere KI-Modelle im algorithmischen Handel zu transformieren. In diesem Artikel erfahren wir, wie wir die aus verschiedenen Instrumenten gewonnenen Informationen nutzen können, um mit Hilfe von Transfer Learning die Vorhersagen für andere Instrumente zu verbessern.
Nutzerdefinierte Debugging- und Profiling-Tools für die MQL5-Entwicklung (Teil I): Erweiterte Protokollierung
Lernen Sie, wie Sie ein leistungsfähiges, nutzerdefiniertes Logging-Framework für MQL5 implementieren, das über einfache Print()-Anweisungen hinausgeht, indem es Schweregrade, mehrere Output-Handler und eine automatische Dateirotation unterstützt - alles on-the-fly konfigurierbar. Integrieren Sie das Singleton CLogger mit ConsoleLogHandler und FileLogHandler, um kontextbezogene Protokolle mit Zeitstempel sowohl in der Registerkarte Experten als auch in persistenten Dateien zu erfassen. Optimieren Sie Debugging und Performance-Tracing in Ihren Expert Advisors mit klaren, anpassbaren Protokollformaten und zentraler Steuerung.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 65): Verwendung von FrAMA-Mustern und des Force Index
Der Fractal Adaptive Moving Average (FrAMA) und der Oszillator Force Index sind ein weiteres Paar von Indikatoren, die in Verbindung mit einem MQL5 Expert Advisor verwendet werden können. Diese beiden Indikatoren ergänzen sich ein wenig, denn der FrAMA ist ein Trendfolgeindikator, während der Force Index ein volumenbasierter Oszillator ist. Wie immer verwenden wir den MQL5-Assistenten, um das Potenzial der beiden schnell zu erkunden.
Graphentheorie: Dijkstras Algorithmus angewandt im Handel
Dijkstras Algorithmus, eine klassische Lösung für den kürzesten Weg in der Graphentheorie, kann Handelsstrategien durch die Modellierung von Marktnetzwerken optimieren. Händler können damit die effizientesten Routen in den Kerzen-Chartdaten finden.
Der MQL5 Standard Library Explorer (Teil 1): Einführung in CTrade, CiMA, und CiATR
Die MQL5-Standardbibliothek spielt eine wichtige Rolle bei der Entwicklung von Handelsalgorithmen für MetaTrader 5. In dieser Diskussionsreihe wollen wir seine Anwendung beherrschen, um die Erstellung effizienter Handelswerkzeuge für MetaTrader 5 zu vereinfachen. Zu diesen Tools gehören nutzerdefinierte Expert Advisors, Indikatoren und andere Hilfsmittel. Wir beginnen heute mit der Entwicklung eines trendfolgenden Expert Advisors unter Verwendung der Klassen CTrade, CiMA und CiATR. Dies ist ein besonders wichtiges Thema für alle – egal, ob Sie Anfänger oder erfahrener Entwickler sind. Nehmen Sie an dieser Diskussion teil und erfahren Sie mehr.
Entwicklung eins Replay Systems (Teil 49): Die Dinge werden kompliziert (I)
In diesem Artikel werden wir die Dinge ein wenig komplizierter machen. Anhand der in den vorangegangenen Artikeln gezeigten Vorgehensweise werden wir die Vorlagendatei öffnen, damit der Nutzer seine eigene Vorlage verwenden kann. Ich werde jedoch nach und nach Änderungen vornehmen, da ich auch den Indikator verfeinern werde, um die Belastung des MetaTrader 5 zu verringern.
Training eines mehrschichtigen Perzeptrons unter Verwendung des Levenberg-Marquardt-Algorithmus
Der Artikel stellt eine Implementierung des Levenberg-Marquardt-Algorithmus für das Training von neuronalen Feedforward-Netzen vor. Es wurde eine vergleichende Analyse der Leistung mit Algorithmen aus der scikit-learn Python-Bibliothek durchgeführt. Einfachere Lernmethoden wie Gradientenabstieg, Gradientenabstieg mit Momentum und stochastischer Gradientenabstieg werden vorläufig diskutiert.
Eine Einführung in die Kurven von Receiver Operating Characteristic
ROC-Kurven sind grafische Darstellungen, die zur Bewertung der Leistung von Klassifikatoren verwendet werden. Obwohl ROC-Diagramme relativ einfach zu handhaben sind, gibt es bei ihrer Verwendung in der Praxis häufig Missverständnisse und Fallstricke. Dieser Artikel bietet eine Einführung in ROC-Diagramme als Hilfsmittel für Praktiker, die die Leistungsbewertung von Klassifikatoren verstehen wollen.
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 57): Überwachtes Lernen mit gleitendem Durchschnitt und dem stochastischen Oszillator
Der gleitende Durchschnitt und der Stochastik-Oszillator sind sehr gängige Indikatoren, die von manchen Händlern aufgrund ihres verzögerten Charakters nicht oft verwendet werden. In einer dreiteiligen Miniserie, die sich mit den drei wichtigsten Formen des maschinellen Lernens befasst, gehen wir der Frage nach, ob die Voreingenommenheit gegenüber diesen Indikatoren gerechtfertigt ist, oder ob sie vielleicht einen Vorteil haben. Wir führen unsere Untersuchung mit Hilfe eines Assistenten durch, der Expert Advisors zusammenstellt.
MQL5-Handelswerkzeuge (Teil 1): Aufbau eines interaktiven visuellen Handelsassistenten für schwebende Aufträge
In diesem Artikel stellen wir die Entwicklung eines interaktiven Handelsassistenten in MQL5 vor, der die Platzierung schwebender Aufträge im Devisenhandel vereinfachen soll. Wir skizzieren das konzeptionelle Design und konzentrieren uns dabei auf eine nutzerfreundliche GUI für die visuelle Einstellung von Einstiegs-, Stop-Loss- und Take-Profit-Levels auf dem Chart. Darüber hinaus wird die MQL5-Implementierung und der Backtest-Prozess detailliert beschrieben, um die Zuverlässigkeit des Tools zu gewährleisten und die Voraussetzungen für die fortgeschrittenen Funktionen in den vorhergehenden Teilen zu schaffen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 62): Nutzung der Muster von ADX und CCI mit Reinforcement-Learning TRPO
Der ADX-Oszillator und der CCI-Oszillator sind Trendfolge- und Momentum-Indikatoren, die bei der Entwicklung eines Expert Advisors miteinander kombiniert werden können. Wir machen dort weiter, wo wir im letzten Artikel aufgehört haben, indem wir untersuchen, wie das Training in der Praxis und die Aktualisierung unseres entwickelten Modells dank des Verstärkungslernens erfolgen kann. Wir verwenden einen Algorithmus, den wir in dieser Serie noch behandeln werden, die sogenannte Trusted Region Policy Optimization (Optimierung vertrauenswürdiger Regionen). Und wie immer erlaubt uns die Zusammenstellung von Expert Advisors durch den MQL5-Assistenten, unser(e) Modell(e) zum Testen viel schneller und auch so einzurichten, dass es mit verschiedenen Signaltypen verteilt und getestet werden kann.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 63): Verwenden von Mustern der Kanäle von DeMarker und Envelope
Der DeMarker-Oszillator und der Envelope-Indikator sind Momentum- und Unterstützungs-/Widerstands-Tools, die bei der Entwicklung eines Expert Advisors kombiniert werden können. Wir prüfen daher Muster für Muster, was von Nutzen sein könnte und was möglicherweise zu vermeiden ist. Wir verwenden, wie immer, einen von einem Assistenten erstellten Expert Advisor zusammen mit den Funktionen der Musterverwendung, die in der Signalklasse des Expert Advisors integriert sind.
MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 70): Verwendung der Muster von SAR und RVI mit einem Exponential-Kernel-Netzwerk
Wir knüpfen an unseren letzten Artikel an, in dem wir das Indikatorpaar SAR und RVI vorstellten, und überlegen, wie dieses Indikatorpaar durch maschinelles Lernen erweitert werden kann. SAR und RVI sind eine komplementäre Paarung von Trend und Momentum. Unser Ansatz des maschinellen Lernens verwendet ein neuronales Faltungsnetzwerk, das bei der Feinabstimmung der Prognosen dieses Indikatorpaares den Exponential-Kernel bei der Dimensionierung seiner Kerne und Kanäle einsetzt. Wie immer wird dies in einer nutzerdefinierten Signalklassendatei durchgeführt, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.
Der Parafrac V2 Oszillator: Integration von Parabolic SAR mit Average True Range
Der Parafrac V2 Oszillator ist ein fortschrittliches technisches Analysewerkzeug, das den Parabolic SAR mit der Average True Range (ATR) integriert, um die Einschränkungen seines Vorgängers zu überwinden, der auf Fraktalen beruhte und anfällig für Signalspitzen war, die vorherige und aktuelle Signale überschatteten. Durch die Nutzung des ATR-Volatilitätsmaßes bietet die Version 2 eine sanftere, zuverlässigere Methode zur Erkennung von Trends, Umkehrungen und Divergenzen und hilft Händlern, Überlastung des Charts und Analyselähmungen zu vermeiden.
Entwicklung eines Replay-Systems (Teil 70): Das richtige Bestimmen der Zeit (III)
In diesem Artikel erfahren Sie, wie Sie die Funktion CustomBookAdd richtig und effektiv nutzen können. Trotz ihrer scheinbaren Einfachheit hat sie viele Nuancen. So können Sie dem Mauszeiger beispielsweise mitteilen, ob ein nutzerdefiniertes Symbol gerade versteigert oder gehandelt wird oder ob der Markt geschlossen ist. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
Matrix-Faktorisierung: Ein praktikables Modell
Sie haben vielleicht nicht bemerkt, dass die Matrixmodellierung etwas seltsam war, da nur Spalten und nicht Zeilen und Spalten angegeben wurden. Das sieht sehr seltsam aus, wenn man den Code liest, der die Matrixfaktorisierung durchführt. Wenn Sie erwartet haben, die Zeilen und Spalten aufgelistet zu sehen, könnten Sie beim Versuch, zu faktorisieren, verwirrt werden. Außerdem ist diese Matrixmodellierungsmethode nicht die beste. Denn wenn wir Matrizen auf diese Weise modellieren, stoßen wir auf einige Einschränkungen, die uns zwingen, andere Methoden oder Funktionen zu verwenden, die nicht notwendig wären, wenn die Modellierung auf eine angemessenere Weise erfolgen würde.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 54): Verstärkungslernen mit hybriden SAC und Tensoren
Soft Actor Critic ist ein Reinforcement Learning-Algorithmus, den wir bereits in einem früheren Artikel vorgestellt haben, in dem wir auch Python und ONNX als effiziente Ansätze für das Training von Netzwerken vorgestellt haben. Wir überarbeiten den Algorithmus mit dem Ziel, Tensoren, Berechnungsgraphen, die häufig in Python verwendet werden, zu nutzen.
Entwicklung eines Replay Systems (Teil 56): Anpassen der Module
Obwohl die Module bereits ordnungsgemäß miteinander interagieren, tritt ein Fehler auf, wenn versucht wird, den Mauszeiger im Wiedergabedienst zu verwenden. Wir müssen dies beheben, bevor wir zum nächsten Schritt übergehen. Außerdem werden wir ein Problem im Code des Mausindikators beheben. Diese Version wird also endlich stabil und ordentlich poliert sein.
Optimierungsmethoden der ALGLIB-Bibliothek (Teil II)
In diesem Artikel werden wir die verbleibenden Optimierungsmethoden aus der ALGLIB-Bibliothek weiter untersuchen, mit besonderem Augenmerk auf deren Prüfung auf komplexe mehrdimensionale Funktionen. So können wir nicht nur die Effizienz der einzelnen Algorithmen bewerten, sondern auch ihre Stärken und Schwächen unter verschiedenen Bedingungen ermitteln.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 47): Verstärkungslernen mit Temporaler Differenz
Temporal Difference ist ein weiterer Algorithmus des Reinforcement Learning, der Q-Werte auf der Grundlage der Differenz zwischen vorhergesagten und tatsächlichen Belohnungen während des Agententrainings aktualisiert. Sie befasst sich speziell mit der Aktualisierung von Q-Werten, ohne sich um die Verknüpfung von Zustand und Aktion zu kümmern. Daher wollen wir sehen, wie wir dies, wie in früheren Artikeln, in einem mit einem Assistenten zusammengestellten Expert Advisor anwenden können.
Aufbau des Kerzenmodells Trend Constraint (Teil 10): Strategisches Goldenes und Todeskreuz (EA)
Wussten Sie, dass die Strategien des Goldenen Kreuzes und des Todeskreuzes, die auf dem Überkreuzen gleitender Durchschnitte basieren, zu den zuverlässigsten Indikatoren für die Erkennung langfristiger Markttrends gehören? Ein Goldenes Kreuz signalisiert einen Aufwärtstrend, wenn der kürzerer gleitender Durchschnitt über den längeren Durchschnitt kreuzt, während ein Todeskreuz einen Abwärtstrend anzeigt, wenn der kürzere Durchschnitt den längeren nach nuten kreuzt. Trotz ihrer Einfachheit und Wirksamkeit führt die manuelle Anwendung dieser Strategien häufig zu verpassten Gelegenheiten oder verzögerten Abschlüssen.