
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (IV): Handelsmanagement-Panel-Klasse
Diese Diskussion behandelt das aktualisierte TradeManagementPanel in unserem New_Admin_Panel EA. Das Update verbessert das Panel durch die Verwendung integrierter Klassen, um eine nutzerfreundliche Schnittstelle für das Handelsmanagement zu bieten. Es enthält Schaltflächen zum Eröffnen von Positionen und Steuerelemente zur Verwaltung bestehender Handelsgeschäfte und ausstehender Aufträge. Ein wichtiges Merkmal ist das integrierte Risikomanagement, das die Einstellung der Werte von Stop-Loss und Take-Profit direkt in der Nutzeroberfläche ermöglicht. Diese Aktualisierung verbessert die Code-Organisation für große Programme und vereinfacht den Zugang zu den Auftragsverwaltungswerkzeugen, die im Terminal oft komplex sind.

Entwicklung eins Replay Systems (Teil 49): Die Dinge werden kompliziert (I)
In diesem Artikel werden wir die Dinge ein wenig komplizierter machen. Anhand der in den vorangegangenen Artikeln gezeigten Vorgehensweise werden wir die Vorlagendatei öffnen, damit der Nutzer seine eigene Vorlage verwenden kann. Ich werde jedoch nach und nach Änderungen vornehmen, da ich auch den Indikator verfeinern werde, um die Belastung des MetaTrader 5 zu verringern.

Klassische Strategien neu interpretieren (Teil V): Analyse mehrerer Symbole für USDZAR
In dieser Artikelserie überprüfen wir klassische Strategien, um herauszufinden, ob wir die Strategie mithilfe von KI verbessern können. Im heutigen Artikel werden wir eine beliebte Strategie der Mehrfachsymbolanalyse anhand eines Korbs korrelierter Wertpapiere untersuchen, wobei wir uns auf das exotische Währungspaar USDZAR konzentrieren werden.

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil VII): Vertrauenswürdiger Nutzer, Wiederherstellung und Kryptografie
Sicherheitsabfragen, wie die, die jedes Mal ausgelöst werden, wenn Sie den Chart aktualisieren, ein neues Paar zum Chat mit dem Admin Panel EA hinzufügen oder das Terminal neu starten, können lästig werden. In dieser Diskussion werden wir eine Funktion untersuchen und implementieren, die die Anzahl der Anmeldeversuche verfolgt, um einen vertrauenswürdigen Nutzer zu identifizieren. Nach einer bestimmten Anzahl von Fehlversuchen geht die Anwendung zu einem erweiterten Anmeldeverfahren über, das auch die Wiederherstellung des Passcodes für Nutzer erleichtert, die ihn vergessen haben. Außerdem werden wir uns damit beschäftigen, wie Kryptographie effektiv in das Admin Panel integriert werden kann, um die Sicherheit zu erhöhen.

Entwicklung eines Wiedergabesystems (Teil 47): Chart Trade Projekt (VI)
Schließlich beginnt unser Indikator Chart Trade mit dem EA zu interagieren, sodass die Informationen interaktiv übertragen werden können. Daher werden wir in diesem Artikel den Indikator verbessern, sodass er funktional genug ist, um zusammen mit jedem EA verwendet zu werden. Dadurch können wir auf den Indikator Chart Trade zugreifen und mit ihm arbeiten, als ob er tatsächlich mit einem EA verbunden wäre. Aber wir werden es auf eine viel interessantere Weise tun als bisher.

Neuronale Netze leicht gemacht (Teil 90): Frequenzinterpolation von Zeitreihen (FITS)
Durch die Untersuchung der FEDformer-Methode haben wir die Tür zum Frequenzbereich der Zeitreihendarstellung geöffnet. In diesem neuen Artikel werden wir das begonnene Thema fortsetzen. Wir werden uns mit einer Methode befassen, mit der wir nicht nur eine Analyse durchführen, sondern auch spätere Zustände in einem bestimmten Bereich vorhersagen können.

Algorithmus für künstliche elektrische Felder (AEFA)
In diesem Artikel wird ein Algorithmus für ein künstliches elektrisches Feld (AEFA) vorgestellt, der durch das Coulombsche Gesetz der elektrostatischen Kraft inspiriert ist. Der Algorithmus simuliert elektrische Phänomene, um komplexe Optimierungsprobleme mit Hilfe geladener Teilchen und ihrer Wechselwirkungen zu lösen. AEFA weist im Zusammenhang mit anderen Algorithmen, die sich auf Naturgesetze beziehen, einzigartige Eigenschaften auf.

Neuronale Netze im Handel: Hierarchische Vektortransformer (Letzter Teil)
Wir fahren fort mit der Untersuchung der Methode der hierarchischen Vektortransformation. In diesem Artikel werden wir die Konstruktion des Modells abschließen. Wir werden es auch anhand echter historischer Daten trainieren und testen.

Erstellen eines Handelsadministrator-Panels in MQL5 Teil IV: Login-Sicherheitsschicht
Stellen Sie sich vor, ein bösartiger Akteur dringt in den Raum des Handelsadministrator ein und verschafft sich Zugang zu den Computern und dem Admin-Panel, über das Millionen von Händlern weltweit wertvolle Informationen erhalten. Ein solches Eindringen könnte katastrophale Folgen haben, z. B. das unbefugte Versenden irreführender Nachrichten oder zufällige Klicks auf Schaltflächen, die unbeabsichtigte Aktionen auslösen. In dieser Diskussion werden wir die Sicherheitsmaßnahmen in MQL5 und die neuen Sicherheitsfunktionen, die wir in unserem Admin-Panel zum Schutz vor diesen Bedrohungen implementiert haben, untersuchen. Durch die Verbesserung unserer Sicherheitsprotokolle wollen wir unsere Kommunikationskanäle schützen und das Vertrauen unserer weltweiten Handelsgemeinschaft erhalten. Weitere Informationen finden Sie in diesem Artikel.

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 18): Einführung in die Quarters-Theorie (III) - Quarters Board
In diesem Artikel erweitern wir das ursprüngliche Quarters-Skript durch die Einführung des Quarters-Boards, einem Werkzeug, mit dem Sie direkt im Chart zwischen den Viertelstufen umschalten können, ohne den Code erneut aufrufen zu müssen. Sie können ganz einfach bestimmte Levels aktivieren oder deaktivieren, und der EA bietet auch Kommentare zur Trendrichtung, damit Sie Marktbewegungen besser verstehen können.

Neuronale Netze im Handel: Räumlich-zeitliches neuronales Netz (STNN)
In diesem Artikel werden wir über die Verwendung von Raum-Zeit-Transformationen zur effektiven Vorhersage bevorstehender Kursbewegungen sprechen. Um die numerische Vorhersagegenauigkeit in STNN zu verbessern, wird ein kontinuierlicher Aufmerksamkeitsmechanismus vorgeschlagen, der es dem Modell ermöglicht, wichtige Aspekte der Daten besser zu berücksichtigen.

Anfragen in Connexus (Teil 6): Erstellen einer HTTP-Anfrage und -Antwort
In diesem sechsten Artikel der Connexus-Bibliotheksreihe befassen wir uns mit einer vollständigen HTTP-Anfrage, wobei jede Komponente, aus der eine Anfrage besteht, behandelt wird. Wir werden eine Klasse erstellen, die den Anfrage als Ganzes repräsentiert, was uns helfen wird, die zuvor erstellten Klassen zusammenzuführen.

JSON beherrschen: Erstellen Sie Ihren eigenen JSON-Reader in MQL5 von Grund auf
Erleben Sie eine Schritt-für-Schritt-Anleitung zur Erstellung eines nutzerdefinierten JSON-Parsers in MQL5, komplett mit Objekt- und Array-Handling, Fehlerprüfung und Serialisierung. Gewinnen Sie praktische Einblicke in die Verknüpfung Ihrer Handelslogik mit strukturierten Daten mit dieser flexiblen Lösung für den Umgang mit JSON in MetaTrader 5.

Meistern der Log-Einträge (Teil 3): Erkunden von Handles zum Speichern von Protokollen
In diesem Artikel werden wir das Konzept der Handler in der Logging-Bibliothek erkunden, verstehen, wie sie funktionieren, und drei erste Implementierungen erstellen: Konsole, Datenbank und Datei. Wir werden alles von der grundlegenden Struktur der Handler bis hin zu praktischen Tests behandeln, um den Boden für ihre volle Funktionalität in zukünftigen Artikeln zu bereiten.

Erstellen von selbstoptimierenden Expert Advisors in MQL5 (Teil 3): Dynamische Trendfolge- und Mean-Reversion-Strategien
Die Finanzmärkte werden in der Regel entweder in eine Handelsspanne oder in einen Trendmodus eingeteilt. Diese statische Sichtweise des Marktes kann es uns leichter machen, kurzfristig zu handeln. Sie ist jedoch von der Realität des Marktes abgekoppelt. In diesem Artikel geht es darum, besser zu verstehen, wie genau sich die Finanzmärkte zwischen diesen beiden möglichen Modi bewegen und wie wir unser neues Verständnis des Marktverhaltens nutzen können, um Vertrauen in unsere algorithmischen Handelsstrategien zu gewinnen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 53): Market Facilitation Index
Der Market Facilitation Index ist ein weiterer Bill-Williams-Indikator, der die Effizienz der Preisbewegung in Verbindung mit dem Volumen messen soll. Wie immer betrachten wir die verschiedenen Muster dieses Indikators im Rahmen einer Assistentensignalklasse und präsentieren eine Vielzahl von Testberichten und Analysen zu den verschiedenen Mustern.

Feature Engineering mit Python und MQL5 (Teil II): Winkel des Preises (2), Polarkoordinaten
In diesem Artikel unternehmen wir den zweiten Versuch, die Veränderungen des Preisniveaus auf einem beliebigen Markt in eine entsprechende Veränderung des Winkels umzuwandeln. Diesmal haben wir einen mathematisch anspruchsvolleren Ansatz gewählt als bei unserem ersten Versuch, und die Ergebnisse, die wir erhalten haben, legen nahe, dass unsere Änderung des Ansatzes die richtige Entscheidung war. Diskutieren Sie heute mit uns, wie wir Polarkoordinaten verwenden können, um den Winkel zu berechnen, der durch Veränderungen der Preisniveaus gebildet wird, und zwar auf sinnvolle Weise, unabhängig davon, welchen Markt Sie gerade analysieren.

Neuronale Netze im Handel: Das „Dual-Attention-Based Trend Prediction Model“
Wir setzen die Diskussion über die Verwendung der stückweisen, linearen Darstellung von Zeitreihen fort, die im vorherigen Artikel begonnen wurde. Heute werden wir sehen, wie diese Methode mit anderen Ansätzen der Zeitreihenanalyse kombiniert werden kann, um die Qualität der Vorhersage des Preistrend zu verbessern.

Von der Grundstufe bis zur Mittelstufe: Übergabe als Wert oder Referenz
In diesem Artikel werden wir den Unterschied zwischen der Übergabe als Wert und der Übergabe einer Referenz praktisch verstehen. Obwohl dies wie etwas Einfaches und Gewöhnliches aussieht, das keine Probleme verursacht, stehen viele erfahrene Programmierer bei der Arbeit am Code gerade wegen dieses kleinen Details oft vor echten Fehlern. Zu wissen, wann, wie und warum man Wertübergabe oder Referenzübergabe verwendet, wird einen großen Unterschied in unserem Leben als Programmierer machen. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.

Neuronale Netze im Handel: Leichtgewichtige Modelle für die Zeitreihenprognose
Leichtgewichtige Modelle zur Zeitreihenprognose erzielen eine hohe Leistung mit einer minimalen Anzahl von Parametern. Dies wiederum reduziert den Rechenaufwand und beschleunigt die Entscheidungsfindung. Trotz ihrer Einfachheit erreichen solche Modelle eine mit komplexeren Modellen vergleichbare Prognosequalität.

Handel mit dem MQL5 Wirtschaftskalender (Teil 4): Implementierung von Echtzeit-Nachrichtenaktualisierungen im Dashboard
Dieser Artikel erweitert unser Wirtschaftskalender-Dashboard durch die Implementierung von Echtzeit-Nachrichten-Updates, um Marktinformationen aktuell und umsetzbar zu halten. Wir integrieren Techniken zum Abrufen von Live-Daten in MQL5, um Ereignisse auf dem Dashboard kontinuierlich zu aktualisieren und die Reaktionsfähigkeit der Schnittstelle zu verbessern. Dieses Update stellt sicher, dass wir direkt über das Dashboard auf die neuesten Wirtschaftsnachrichten zugreifen können, um unsere Handelsentscheidungen auf der Grundlage der aktuellsten Daten zu optimieren.

MQL5 Handels-Toolkit (Teil 4): Entwicklung einer EX5-Bibliothek zur Verwaltung der Handelsgeschichte
Lernen Sie, wie Sie geschlossene Positionen, Aufträge und Deals mit MQL5 abrufen, verarbeiten, klassifizieren, sortieren, analysieren und verwalten können, indem Sie in einer detaillierten Schritt-für-Schritt-Anleitung eine umfangreiche History Management EX5 Library erstellen.

Einführung in MQL5 (Teil 12): Ein Anfängerleitfaden für das Erstellen nutzerdefinierter Indikatoren
Erfahren Sie, wie Sie einen nutzerdefinierten Indikator in MQL5 erstellen können. Mit einem projektbezogenen Ansatz. Dieser einsteigerfreundliche Leitfaden behandelt Indikatorpuffer, Eigenschaften und Trendvisualisierung und ermöglicht es Ihnen, Schritt für Schritt zu lernen.

Matrix-Faktorisierung: Ein praktikables Modell
Sie haben vielleicht nicht bemerkt, dass die Matrixmodellierung etwas seltsam war, da nur Spalten und nicht Zeilen und Spalten angegeben wurden. Das sieht sehr seltsam aus, wenn man den Code liest, der die Matrixfaktorisierung durchführt. Wenn Sie erwartet haben, die Zeilen und Spalten aufgelistet zu sehen, könnten Sie beim Versuch, zu faktorisieren, verwirrt werden. Außerdem ist diese Matrixmodellierungsmethode nicht die beste. Denn wenn wir Matrizen auf diese Weise modellieren, stoßen wir auf einige Einschränkungen, die uns zwingen, andere Methoden oder Funktionen zu verwenden, die nicht notwendig wären, wenn die Modellierung auf eine angemessenere Weise erfolgen würde.

Der Header im Connexus (Teil 3): Die Verwendung von HTTP-Headern für Anfragen beherrschen
Wir entwickeln die Connexus-Bibliothek weiter. In diesem Kapitel wird das Konzept der Header im HTTP-Protokoll erläutert. Es wird erklärt, was sie sind, wozu sie dienen und wie man sie in Anfragen verwendet. Wir behandeln die wichtigsten Header, die bei der Kommunikation mit APIs verwendet werden, und zeigen praktische Beispiele, wie sie in der Bibliothek konfiguriert werden können.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 51): Verstärkungslernen mit SAC
Soft Actor Critic ist ein Reinforcement Learning Algorithmus, der 3 neuronale Netze verwendet. Ein Netzwerk für den Actor und 2 Critic-Netze. Diese maschinellen Lernmodelle werden in einer Master-Slave-Partnerschaft gepaart, in der die Kritiker modelliert werden, um die Prognosegenauigkeit des Akteursnetzwerks zu verbessern. Während wir in dieser Serie auch ONNX vorstellen, untersuchen wir, wie diese Ideen als nutzerdefiniertes Signal eines von einem Assistenten zusammengestellten Expert Advisors getestet werden können.

Entwicklung eines Replay-Systems (Teil 59): Eine neue Zukunft
Wenn wir die unterschiedlichen Ideen richtig verstehen, können wir mit weniger Aufwand mehr erreichen. In diesem Artikel sehen wir uns an, warum es notwendig ist, eine Vorlage zu konfigurieren, bevor der Dienst mit dem Chart interagieren kann. Und was wäre, wenn wir den Mauszeiger verbessern würden, damit wir mehr damit machen können?

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 49): Verstärkungslernen mit Optimierung der proximalen Politik
Die „Proximal Policy Optimization“ ist ein weiterer Algorithmus des Reinforcement Learning, der die „Policy“, oft in Form eines Netzwerks, in sehr kleinen inkrementellen Schritten aktualisiert, um die Stabilität des Modells zu gewährleisten. Wir untersuchen, wie dies in einem von einem Assistenten zusammengestellten Expert Advisor von Nutzen sein könnte, wie wir es in früheren Artikeln getan haben.

Trendvorhersage mit LSTM für Trendfolgestrategien
Long Short-Term Memory (LSTM) ist eine Art rekurrentes neuronales Netz (RNN), das für die Modellierung sequenzieller Daten entwickelt wurde, indem es langfristige Abhängigkeiten effektiv erfasst und das Problem des verschwindenden Gradienten löst. In diesem Artikel werden wir untersuchen, wie LSTM zur Vorhersage zukünftiger Trends eingesetzt werden kann, um die Leistung von Trendfolgestrategien zu verbessern. Der Artikel behandelt die Einführung von Schlüsselkonzepten und die Motivation hinter der Entwicklung, das Abrufen von Daten aus dem MetaTrader 5, die Verwendung dieser Daten zum Trainieren des Modells in Python, die Integration des maschinellen Lernmodells in MQL5 und die Reflexion der Ergebnisse und zukünftigen Bestrebungen auf der Grundlage von statistischem Backtesting.

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 11): Heikin Ashi Signal EA
MQL5 bietet unendlich viele Möglichkeiten, automatisierte Handelssysteme zu entwickeln, die auf Ihre Wünsche zugeschnitten sind. Wussten Sie, dass er sogar komplexe mathematische Berechnungen durchführen kann? In diesem Artikel stellen wir die japanische Heikin Ashi Technik als automatisierte Handelsstrategie vor.

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 13): RSI-Sentinel-Tool
Die Kursentwicklung kann durch die Identifizierung von Divergenzen effektiv analysiert werden, wobei technische Indikatoren wie der RSI wichtige Bestätigungssignale liefern. Im folgenden Artikel erläutern wir, wie eine automatisierte RSI-Divergenzanalyse Trendfortsetzungen und -umkehrungen erkennen kann und damit wertvolle Einblicke in die Marktstimmung bietet.

Resampling-Techniken für die Bewertung von Vorhersagen und Klassifizierungen in MQL5
In diesem Artikel werden wir Methoden zur Bewertung der Modellqualität erforschen und implementieren, die einen einzigen Datensatz sowohl als Trainings- als auch als Validierungssatz verwenden.

Neuronale Netze im Handel: Stückweise, lineare Darstellung von Zeitreihen
Dieser Artikel unterscheidet sich etwas von meinen früheren Veröffentlichungen. In diesem Artikel werden wir über eine alternative Darstellung von Zeitreihen sprechen. Die stückweise, lineare Darstellung von Zeitreihen ist eine Methode zur Annäherung einer Zeitreihe durch lineare Funktionen über kleine Intervalle.

Risikomodell für ein Portfolio unter Verwendung des Kelly-Kriteriums und der Monte-Carlo-Simulation
Seit Jahrzehnten verwenden Händler die Formel des Kelly-Kriteriums, um den optimalen Anteil des Kapitals für eine Investition oder eine Wette zu bestimmen, um das langfristige Wachstum zu maximieren und gleichzeitig das Risiko des Ruins zu minimieren. Das blinde Befolgen des Kelly-Kriteriums auf der Grundlage der Ergebnisse eines einzigen Backtests ist jedoch für einzelne Händler oft gefährlich, da beim Live-Handel der Handelsvorsprung im Laufe der Zeit abnimmt und die vergangene Leistung keine Vorhersage für das zukünftige Ergebnis ist. In diesem Artikel werde ich einen realistischen Ansatz für die Anwendung des Kelly-Kriteriums für die Risikoallokation eines oder mehrerer EAs in MetaTrader 5 vorstellen und dabei die Ergebnisse der Monte-Carlo-Simulation von Python einbeziehen.

Automatisieren von Handelsstrategien in MQL5 (Teil 10): Entwicklung der Strategie Trend Flat Momentum
In diesem Artikel entwickeln wir einen Expert Advisor in MQL5 für die Strategie Trend Flat Momentum. Wir kombinieren das Kreuzen zweier gleitender Durchschnitte, gefiltert mit dem Momentum von RSI und CCI, um Handelssignale zu generieren. Wir befassen uns auch mit Backtests und möglichen Verbesserungen für die reale Leistung.

Automatisieren von Handelsstrategien in MQL5 (Teil 11): Entwicklung eines mehrstufigen Raster-Handelssystems
In diesem Artikel entwickeln wir einen EA mit einem Rasterhandels-System mit mehreren Ebenen in MQL5 und konzentrieren uns dabei auf die Architektur und den Algorithmusentwurf hinter den Strategien des Rasterhandels. Wir erforschen die Implementierung einer mehrschichtigen Netzlogik und von Risikomanagementtechniken, um mit unterschiedlichen Marktbedingungen umgehen zu können. Abschließend finden Sie ausführliche Erklärungen und praktische Tipps, die Sie beim Aufbau, Testen und Verfeinern des automatischen Handelssystems unterstützen.

Entwicklung eines Replay Systems (Teil 48): Das Konzept eines Dienstes verstehen
Wie wäre es, etwas Neues zu lernen? In diesem Artikel erfahren Sie, wie Sie Skripte in Dienste umwandeln können und warum dies sinnvoll ist.

Integration von MQL5 mit Datenverarbeitungspaketen (Teil 4): Umgang mit großen Daten
Dieser Teil befasst sich mit fortgeschrittenen Techniken zur Integration von MQL5 mit leistungsstarken Datenverarbeitungswerkzeugen und konzentriert sich auf den effizienten Umgang mit Big Data zur Verbesserung der Handelsanalyse und Entscheidungsfindung.

Statistische Arbitrage durch Mean Reversion im Paarhandel: Den Markt mit Mathematik schlagen
Dieser Artikel beschreibt die Grundlagen der statistischen Arbitrage auf Portfolioebene. Sein Ziel ist es, das Verständnis der Prinzipien der statistischen Arbitrage für Leser ohne tiefgreifende mathematische Kenntnisse zu erleichtern und einen konzeptionellen Rahmen für den Ausgangspunkt vorzuschlagen. Der Artikel enthält einen funktionierenden Expert Advisor, einige Anmerkungen zu seinem einjährigen Backtest und die entsprechenden Backtest-Konfigurationseinstellungen (.ini-Datei) für die Reproduktion des Experiments.

Quantitativer Ansatz für das Risikomanagement: Anwendung des VaR-Modells zur Optimierung eines Multiwährungsportfolios mit Python und MetaTrader 5
In diesem Artikel wird das Potenzial des Value-at-Risk (VaR)-Modells für die Optimierung von Portfolios in mehreren Währungen untersucht. Mit Hilfe von Python und der Funktionalität von MetaTrader 5 demonstrieren wir, wie man eine VaR-Analyse für eine effiziente Kapitalallokation und Positionsverwaltung implementiert. Von den theoretischen Grundlagen bis zur praktischen Umsetzung behandelt der Artikel alle Aspekte der Anwendung eines der robustesten Risikoberechnungssysteme - VaR - im algorithmischen Handel.