Artikel über das Programmieren in MQL4 und MQL5

icon

Lernen Sie die Sprache von Handelsstrategien MQL5 nach den hier veröffentlichten Artikeln, die meisten von denen Sie - die Mitglieder der Community - geschrieben haben. Alle Artikel sind in drei Kategorien aufgeteilt, damit man eine Antwort auf unterschiedliche Fragen des Programmierens schnell finden könnte: "Integration", "Tester", "Handelsstrategien" und vieles mehr.

Verfolgen Sie neue Veröffentlichungen und diskutieren Sie über diese im Forum!

Neuer Artikel
letzte | beste
preview
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil XII): Integration eines Rechners für Forex-Werte

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil XII): Integration eines Rechners für Forex-Werte

Die genaue Berechnung der wichtigsten Handelswerte ist ein unverzichtbarer Bestandteil des Arbeitsablaufs eines jeden Händlers. In diesem Artikel werden wir die Integration eines leistungsstarken Dienstprogramms - des Forex-Rechners - in das Handelsverwaltungs-Panel besprechen, wodurch die Funktionalität unseres Multi-Panel-Handelsverwaltungssystems noch erweitert wird. Die effiziente Bestimmung von Risiko, Positionsgröße und potenziellem Gewinn ist bei der Platzierung von Handelsgeschäften von entscheidender Bedeutung, und diese neue Funktion wurde entwickelt, um diesen Prozess innerhalb des Panels schneller und intuitiver zu gestalten. Erforschen Sie mit uns die praktische Anwendung von MQL5 beim Aufbau fortgeschrittener Handelspanels.
preview
Trendvorhersage mit LSTM für Trendfolgestrategien

Trendvorhersage mit LSTM für Trendfolgestrategien

Long Short-Term Memory (LSTM) ist eine Art rekurrentes neuronales Netz (RNN), das für die Modellierung sequenzieller Daten entwickelt wurde, indem es langfristige Abhängigkeiten effektiv erfasst und das Problem des verschwindenden Gradienten löst. In diesem Artikel werden wir untersuchen, wie LSTM zur Vorhersage zukünftiger Trends eingesetzt werden kann, um die Leistung von Trendfolgestrategien zu verbessern. Der Artikel behandelt die Einführung von Schlüsselkonzepten und die Motivation hinter der Entwicklung, das Abrufen von Daten aus dem MetaTrader 5, die Verwendung dieser Daten zum Trainieren des Modells in Python, die Integration des maschinellen Lernmodells in MQL5 und die Reflexion der Ergebnisse und zukünftigen Bestrebungen auf der Grundlage von statistischem Backtesting.
preview
Datenwissenschaft und ML (Teil 40): Verwendung von Fibonacci-Retracements in Daten des maschinellen Lernens

Datenwissenschaft und ML (Teil 40): Verwendung von Fibonacci-Retracements in Daten des maschinellen Lernens

Fibonacci-Retracements sind ein beliebtes Instrument der technischen Analyse, das Händlern hilft, potenzielle Umkehrzonen zu identifizieren. In diesem Artikel werden wir untersuchen, wie diese Retracement-Levels in Zielvariablen für maschinelle Lernmodelle umgewandelt werden können, damit diese den Markt mit Hilfe dieses leistungsstarken Tools besser verstehen können.
preview
Nutzerdefinierter Indikator: Darstellen von partiellen Eintritts-, Austritts- und Stornogeschäften für Netting-Konten

Nutzerdefinierter Indikator: Darstellen von partiellen Eintritts-, Austritts- und Stornogeschäften für Netting-Konten

In diesem Artikel werden wir uns eine nicht standardisierte Methode zur Erstellung eines Indikators in MQL5 ansehen. Anstatt sich auf einen Trend oder ein Chartmuster zu konzentrieren, wird unser Ziel sein, unsere eigenen Positionen zu verwalten, einschließlich partieller Ein- und Ausstiege. Wir werden ausgiebig Gebrauch von dynamischen Matrizen und einigen Handelsfunktionen machen, die sich auf die Handelshistorie und offene Positionen beziehen, um auf dem Chart anzuzeigen, wo diese Geschäfte getätigt wurden.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 13): Automatisierung der zweiten Phase — Aufteilung in Gruppen

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 13): Automatisierung der zweiten Phase — Aufteilung in Gruppen

Die erste Stufe der automatischen Optimierung haben wir bereits umgesetzt. Wir führen die Optimierung für verschiedene Symbole und Zeiträume nach mehreren Kriterien durch und speichern Informationen über die Ergebnisse jedes Durchgangs in der Datenbank. Nun werden wir die besten Gruppen von Parametersätzen aus den in der ersten Stufe gefundenen auswählen.
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 39): RSI (Relative Strength Index)

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 39): RSI (Relative Strength Index)

Der RSI ist ein beliebter Momentum-Oszillator, der das Tempo und den Umfang der jüngsten Kursveränderungen eines Wertpapiers misst, um über- und unterbewertete Situationen im Kurs des Wertpapiers zu bewerten. Diese Erkenntnisse in Bezug auf Geschwindigkeit und Ausmaß sind der Schlüssel zur Festlegung von Umkehrpunkten. Wir setzen diesen Oszillator in einer anderen nutzerdefinierten Signalklasse ein und untersuchen die Eigenschaften einiger seiner Signale. Wir beginnen jedoch mit dem Abschluss dessen, was wir zuvor über Bollinger-Bänder begonnen haben.
preview
Feature Engineering mit Python und MQL5 (Teil II): Winkel des Preises (2), Polarkoordinaten

Feature Engineering mit Python und MQL5 (Teil II): Winkel des Preises (2), Polarkoordinaten

In diesem Artikel unternehmen wir den zweiten Versuch, die Veränderungen des Preisniveaus auf einem beliebigen Markt in eine entsprechende Veränderung des Winkels umzuwandeln. Diesmal haben wir einen mathematisch anspruchsvolleren Ansatz gewählt als bei unserem ersten Versuch, und die Ergebnisse, die wir erhalten haben, legen nahe, dass unsere Änderung des Ansatzes die richtige Entscheidung war. Diskutieren Sie heute mit uns, wie wir Polarkoordinaten verwenden können, um den Winkel zu berechnen, der durch Veränderungen der Preisniveaus gebildet wird, und zwar auf sinnvolle Weise, unabhängig davon, welchen Markt Sie gerade analysieren.
preview
Umstellung auf MQL5 Algo Forge (Teil 1): Erstellen des Haupt-Repositorys

Umstellung auf MQL5 Algo Forge (Teil 1): Erstellen des Haupt-Repositorys

Bei der Arbeit an Projekten in MetaEditor stehen Entwickler oft vor der Notwendigkeit, Codeversionen zu verwalten. MetaQuotes kündigte kürzlich die Migration zu GIT und die Einführung von MQL5 Algo Forge mit Codeversionierung und Kollaborationsfunktionen an. In diesem Artikel wird erörtert, wie die neuen und bereits vorhandenen Tools effizienter genutzt werden können.
preview
Entwicklung eines Replay System (Teil 57): Verstehen eines Testdienstes

Entwicklung eines Replay System (Teil 57): Verstehen eines Testdienstes

Ein Hinweis: Obwohl der Code für einen Dienst in diesem Artikel nicht enthalten ist und erst im nächsten Artikel zur Verfügung gestellt wird, werde ich ihn erläutern, da wir denselben Code als Sprungbrett für unsere eigentliche Entwicklung verwenden werden. Seien Sie also aufmerksam und geduldig. Warten Sie auf den nächsten Artikel, denn jeden Tag wird es interessanter.
preview
Algorithmus zur Optimierung der Migration der Tiere (AMO)

Algorithmus zur Optimierung der Migration der Tiere (AMO)

Der Artikel ist dem AMO-Algorithmus gewidmet, der die saisonale Migration von Tieren auf der Suche nach optimalen Bedingungen für Leben und Fortpflanzung modelliert. Zu den Hauptfunktionen von AMO gehören die Verwendung topologischer Nachbarschaften und ein probabilistischer Aktualisierungsmechanismus, der die Implementierung vereinfacht und die Flexibilität für verschiedene Optimierungsaufgaben gewährleistet.
preview
Neuronale Netze im Handel: Der Contrastive Muster-Transformer (letzter Teil)

Neuronale Netze im Handel: Der Contrastive Muster-Transformer (letzter Teil)

Im letzten Artikel dieser Reihe haben wir uns mit dem Atom-Motif Contrastive Transformer (AMCT) beschäftigt, der kontrastives Lernen zur Entdeckung von Schlüsselmustern auf allen Ebenen einsetzt, von grundlegenden Elementen bis hin zu komplexen Strukturen. In diesem Artikel setzen wir die Implementierung von AMCT-Ansätzen mit MQL5 fort.
preview
Neuronale Netze im Handel: Ein parameter-effizienter Transformer mit segmentierter Aufmerksamkeit (PSformer)

Neuronale Netze im Handel: Ein parameter-effizienter Transformer mit segmentierter Aufmerksamkeit (PSformer)

In diesem Artikel wird das neue PSformer-Framework vorgestellt, das die Architektur des einfachen Transformers an die Lösung von Problemen im Zusammenhang mit multivariaten Zeitreihenprognosen anpasst. Der Rahmen basiert auf zwei wichtigen Innovationen: dem Parameter-Sharing-Mechanismus (PS) und der Segment Attention (SegAtt).
preview
Optimierung und Optimierung des Roh-Codes zur Verbesserung der Backtest-Ergebnisse

Optimierung und Optimierung des Roh-Codes zur Verbesserung der Backtest-Ergebnisse

Verbessern Sie Ihren MQL5-Code durch Optimierung der Logik, Verfeinerung der Berechnungen und Verkürzung der Ausführungszeit, um die Genauigkeit von Backtests zu verbessern. Feinabstimmung von Parametern, Optimierung von Schleifen und Beseitigung von Ineffizienzen für bessere Leistung.
preview
Vom Neuling zum Experten: Autogeometrisches Analysesystem

Vom Neuling zum Experten: Autogeometrisches Analysesystem

Geometrische Muster bieten Händlern eine prägnante Methode zur Interpretation von Kursbewegungen. Viele Analysten zeichnen Trendlinien, Rechtecke und andere Formen mit der Hand und treffen ihre Handelsentscheidungen dann auf der Grundlage der von ihnen gesehenen Formationen. In diesem Artikel untersuchen wir eine automatisierte Alternative: die Nutzung von MQL5 zur Erkennung und Analyse der gängigsten geometrischen Muster. Wir schlüsseln die Methodik auf, erörtern Details der Implementierung und zeigen auf, wie die automatische Mustererkennung die Markteinblicke eines Händlers schärfen kann.
preview
Erstellen von selbstoptimierenden Expertenberatern in MQL5 (Teil 7): Handel mit mehreren Periodenlängen gleichzeitig

Erstellen von selbstoptimierenden Expertenberatern in MQL5 (Teil 7): Handel mit mehreren Periodenlängen gleichzeitig

In dieser Artikelserie haben wir mehrere verschiedene Möglichkeiten zur Ermittlung der besten Periodenlänge für die Verwendung unserer technischen Indikatoren untersucht. Heute werden wir dem Leser zeigen, wie er stattdessen die umgekehrte Logik anwenden kann, d. h., anstatt die beste Periodenlänge auszuwählen, werden wir dem Leser zeigen, wie er alle verfügbaren Periodenlängen effektiv nutzen kann. Dieser Ansatz reduziert die Menge der verworfenen Daten und bietet alternative Anwendungsmöglichkeiten für Algorithmen des maschinellen Lernens, die über die normale Preisvorhersage hinausgehen.
preview
Selbstoptimierende Expert Advisors in MQL5 (Teil 12): Aufbau von linearen Klassifikatoren durch Matrixfaktorisierung

Selbstoptimierende Expert Advisors in MQL5 (Teil 12): Aufbau von linearen Klassifikatoren durch Matrixfaktorisierung

Dieser Artikel befasst sich mit der leistungsfähigen Rolle der Matrixfaktorisierung im algorithmischen Handel, insbesondere in MQL5-Anwendungen. Von Regressionsmodellen bis hin zu Multi-Target-Klassifikatoren gehen wir durch praktische Beispiele, die zeigen, wie einfach diese Techniken mit Hilfe von integrierten MQL5-Funktionen integriert werden können. Ganz gleich, ob Sie die Kursrichtung vorhersagen oder das Verhalten von Indikatoren modellieren wollen, dieser Leitfaden schafft eine solide Grundlage für den Aufbau intelligenter Handelssysteme mit Hilfe von Matrixmethoden.
preview
Erstellen von selbstoptimierenden Expert Advisor in MQL5 (Teil 6): Stop-Out-Prävention

Erstellen von selbstoptimierenden Expert Advisor in MQL5 (Teil 6): Stop-Out-Prävention

Schließen Sie sich unserer heutigen Diskussion an, wenn wir nach einem algorithmischen Verfahren suchen, mit dem wir die Gesamtzahl der Ausstiege aus Gewinngeschäften minimieren können. Das Problem, mit dem wir konfrontiert waren, ist sehr schwierig, und die meisten Lösungen, die in den Diskussionen in der Gemeinschaft genannt wurden, haben keine festen Regeln. Unser algorithmischer Ansatz zur Lösung des Problems erhöhte die Rentabilität unserer Handelsgeschäft und reduzierte den durchschnittlichen Verlust pro Handelsgeschäft. Es müssen jedoch noch weitere Fortschritte gemacht werden, um alle Handelsgeschäfte, die ausgestoppt werden, vollständig herauszufiltern, aber unsere Lösung ist ein guter erster Schritt, den jeder ausprobieren kann.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 8): Aufbau eines Expert Advisors mit harmonischen Schmetterlingsmustern

Automatisieren von Handelsstrategien in MQL5 (Teil 8): Aufbau eines Expert Advisors mit harmonischen Schmetterlingsmustern

In diesem Artikel bauen wir einen MQL5 Expert Advisor, um harmonische Schmetterlingsmuster zu erkennen. Wir identifizieren Umkehrpunkte und validieren Fibonacci-Levels, um das Muster zu bestätigen. Wir visualisieren dann das Muster auf dem Chart und führen automatisch Handelsgeschäfte aus, wenn es bestätigt wird.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 15): Price Action Harmonic Cypher Pattern mit Visualisierung

Automatisieren von Handelsstrategien in MQL5 (Teil 15): Price Action Harmonic Cypher Pattern mit Visualisierung

In diesem Artikel befassen wir uns mit der Automatisierung des harmonischen Cypher-Musters in MQL5 und erläutern seine Erkennung und Visualisierung auf MetaTrader 5-Charts. Wir implementieren einen Expert Advisor, der Umkehrpunkte identifiziert, Fibonacci-basierte Muster validiert und Handelsgeschäfte mit klaren grafischen Kommentaren ausführt. Der Artikel schließt mit einer Anleitung zu den Backtests und zur Optimierung des Programms für einen effektiven Handel.
preview
Selbstoptimierende Expert Advisors in MQL5 (Teil 8): Analyse mehrerer Strategien (3) – Gewichtetes Abstimmungsverhalten

Selbstoptimierende Expert Advisors in MQL5 (Teil 8): Analyse mehrerer Strategien (3) – Gewichtetes Abstimmungsverhalten

In diesem Artikel wird untersucht, wie die Bestimmung der optimalen Anzahl von Strategien in einem Ensemble eine komplexe Aufgabe sein kann, die durch den Einsatz des genetischen Optimierers von MetaTrader 5 leichter zu lösen ist. Die MQL5 Cloud wird auch als Schlüsselressource zur Beschleunigung von Backtests und Optimierung eingesetzt. Alles in allem schafft unsere Diskussion hier die Grundlage für die Entwicklung statistischer Modelle zur Bewertung und Verbesserung von Handelsstrategien auf der Grundlage unserer ersten Ensemble-Ergebnisse.
preview
Erstellen von einem Trading Administrator Panel in MQL5 (Teil VI): Schnittstelle für mehrere Funktionen (I)

Erstellen von einem Trading Administrator Panel in MQL5 (Teil VI): Schnittstelle für mehrere Funktionen (I)

Die Rolle des Handelsadministrators geht über die reine Telegram-Kommunikation hinaus; er kann auch verschiedene Kontrolltätigkeiten ausüben, einschließlich Auftragsmanagement, Positionsverfolgung und Schnittstellenanpassung. In diesem Artikel geben wir praktische Einblicke in die Erweiterung unseres Programms zur Unterstützung mehrerer Funktionalitäten in MQL5. Dieses Update zielt darauf ab, die Beschränkung des aktuellen Admin Panels zu überwinden, das sich in erster Linie auf die Kommunikation konzentriert, und ermöglicht es, ein breiteres Spektrum von Aufgaben zu bewältigen.
preview
Erstellen von 3D-Balken auf der Grundlage von Zeit, Preis und Volumen

Erstellen von 3D-Balken auf der Grundlage von Zeit, Preis und Volumen

Der Artikel befasst sich mit multivariaten Kurs-Charts in 3D und deren Erstellung. Wir werden auch untersuchen, wie 3D-Balken eine Preisumkehr vorhersagen, und wie Python und MetaTrader 5 es uns ermöglichen, diese Volumenbalken in Echtzeit darzustellen.
preview
Erstellen von selbstoptimierenden Expert Advisors in MQL5 (Teil 3): Dynamische Trendfolge- und Mean-Reversion-Strategien

Erstellen von selbstoptimierenden Expert Advisors in MQL5 (Teil 3): Dynamische Trendfolge- und Mean-Reversion-Strategien

Die Finanzmärkte werden in der Regel entweder in eine Handelsspanne oder in einen Trendmodus eingeteilt. Diese statische Sichtweise des Marktes kann es uns leichter machen, kurzfristig zu handeln. Sie ist jedoch von der Realität des Marktes abgekoppelt. In diesem Artikel geht es darum, besser zu verstehen, wie genau sich die Finanzmärkte zwischen diesen beiden möglichen Modi bewegen und wie wir unser neues Verständnis des Marktverhaltens nutzen können, um Vertrauen in unsere algorithmischen Handelsstrategien zu gewinnen.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 53): Market Facilitation Index

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 53): Market Facilitation Index

Der Market Facilitation Index ist ein weiterer Bill-Williams-Indikator, der die Effizienz der Preisbewegung in Verbindung mit dem Volumen messen soll. Wie immer betrachten wir die verschiedenen Muster dieses Indikators im Rahmen einer Assistentensignalklasse und präsentieren eine Vielzahl von Testberichten und Analysen zu den verschiedenen Mustern.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 18): Einführung in die Quarters-Theorie (III) - Quarters Board

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 18): Einführung in die Quarters-Theorie (III) - Quarters Board

In diesem Artikel erweitern wir das ursprüngliche Quarters-Skript durch die Einführung des Quarters-Boards, einem Werkzeug, mit dem Sie direkt im Chart zwischen den Viertelstufen umschalten können, ohne den Code erneut aufrufen zu müssen. Sie können ganz einfach bestimmte Levels aktivieren oder deaktivieren, und der EA bietet auch Kommentare zur Trendrichtung, damit Sie Marktbewegungen besser verstehen können.
preview
Entwicklung eines Replay-Systems (Teil 67): Verfeinerung des Kontrollindikators

Entwicklung eines Replay-Systems (Teil 67): Verfeinerung des Kontrollindikators

In diesem Artikel werden wir uns ansehen, was mit ein wenig Code-Verfeinerung erreicht werden kann. Diese Verfeinerung zielt darauf ab, unseren Code zu vereinfachen, mehr Gebrauch von MQL5-Bibliotheksaufrufen zu machen und ihn vor allem viel stabiler, sicherer und einfacher in anderen Projekten zu verwenden, die wir in Zukunft entwickeln werden.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 33): Gauß-Prozess-Kerne

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 33): Gauß-Prozess-Kerne

Gaußsche Prozesskerne sind die Kovarianzfunktion der Normalverteilung, die bei der Vorhersage eine Rolle spielen können. Wir untersuchen diesen einzigartigen Algorithmus in einer nutzerdefinierten Signalklasse von MQL5, um zu sehen, ob er als erstklassiges Einstiegs- und Ausstiegssignal verwendet werden kann.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 37): Gaußsche Prozessregression mit linearen und Matérn-Kernel

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 37): Gaußsche Prozessregression mit linearen und Matérn-Kernel

Lineare Kernel sind die einfachste Matrix ihrer Art, die beim maschinellen Lernen für lineare Regression und Support Vector Machines verwendet wird. Der Matérn-Kernel hingegen ist eine vielseitigere Version der Radialbasisfunktion, die wir in einem früheren Artikel besprochen haben, und er eignet sich für die Abbildung von Funktionen, die nicht so glatt sind, wie es die RBF annehmen würde. Wir erstellen eine nutzerdefinierte Signalklasse, die beide Kernel für die Vorhersage von Long- und Short-Bedingungen verwendet.
preview
Integration von MQL5 mit Datenverarbeitungspaketen (Teil 3): Verbesserte Datenvisualisierung

Integration von MQL5 mit Datenverarbeitungspaketen (Teil 3): Verbesserte Datenvisualisierung

In diesem Artikel werden wir eine erweiterte Datenvisualisierung durchführen, indem wir über einfache Charts hinausgehen und Funktionen wie Interaktivität, geschichtete Daten und dynamische Elemente einbeziehen, die es Händlern ermöglichen, Trends, Muster und Korrelationen effektiver zu untersuchen.
preview
Nichtlineare Regressionsmodelle an der Börse

Nichtlineare Regressionsmodelle an der Börse

Nichtlineare Regressionsmodelle an der Börse: Ist es möglich, die Finanzmärkte vorherzusagen? Betrachten wir die Erstellung eines Modells für die Vorhersage der Preise für EURUSD, und machen zwei Roboter auf der Grundlage - in Python und MQL5.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 68):  Verwendung von TRIX-Mustern und des Williams Percent Range mit einem Cosinus-Kernel-Netzwerk

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 68): Verwendung von TRIX-Mustern und des Williams Percent Range mit einem Cosinus-Kernel-Netzwerk

Wir knüpfen an unseren letzten Artikel an, in dem wir das Indikatorpaar TRIX und Williams Percent Range vorstellten, und überlegen, wie dieses Indikatorpaar durch maschinelles Lernen erweitert werden kann. TRIX und Williams Percent sind ein Trend- und Unterstützungs-/Widerstandspaar, das sich gegenseitig ergänzt. Unser Ansatz des maschinellen Lernens verwendet ein neuronales Faltungsnetzwerk, das bei der Feinabstimmung der Prognosen dieses Indikatorpaares den Kosinus-Kernel in seine Architektur einbezieht. Wie immer wird dies in einer nutzerdefinierten Signalklassendatei durchgeführt, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.
preview
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil VII): Vertrauenswürdiger Nutzer, Wiederherstellung und Kryptografie

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil VII): Vertrauenswürdiger Nutzer, Wiederherstellung und Kryptografie

Sicherheitsabfragen, wie die, die jedes Mal ausgelöst werden, wenn Sie den Chart aktualisieren, ein neues Paar zum Chat mit dem Admin Panel EA hinzufügen oder das Terminal neu starten, können lästig werden. In dieser Diskussion werden wir eine Funktion untersuchen und implementieren, die die Anzahl der Anmeldeversuche verfolgt, um einen vertrauenswürdigen Nutzer zu identifizieren. Nach einer bestimmten Anzahl von Fehlversuchen geht die Anwendung zu einem erweiterten Anmeldeverfahren über, das auch die Wiederherstellung des Passcodes für Nutzer erleichtert, die ihn vergessen haben. Außerdem werden wir uns damit beschäftigen, wie Kryptographie effektiv in das Admin Panel integriert werden kann, um die Sicherheit zu erhöhen.
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 49): Verstärkungslernen mit Optimierung der proximalen Politik

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 49): Verstärkungslernen mit Optimierung der proximalen Politik

Die „Proximal Policy Optimization“ ist ein weiterer Algorithmus des Reinforcement Learning, der die „Policy“, oft in Form eines Netzwerks, in sehr kleinen inkrementellen Schritten aktualisiert, um die Stabilität des Modells zu gewährleisten. Wir untersuchen, wie dies in einem von einem Assistenten zusammengestellten Expert Advisor von Nutzen sein könnte, wie wir es in früheren Artikeln getan haben.
preview
MQL5 Handels-Toolkit (Teil 4): Entwicklung einer EX5-Bibliothek zur Verwaltung der Handelsgeschichte

MQL5 Handels-Toolkit (Teil 4): Entwicklung einer EX5-Bibliothek zur Verwaltung der Handelsgeschichte

Lernen Sie, wie Sie geschlossene Positionen, Aufträge und Deals mit MQL5 abrufen, verarbeiten, klassifizieren, sortieren, analysieren und verwalten können, indem Sie in einer detaillierten Schritt-für-Schritt-Anleitung eine umfangreiche History Management EX5 Library erstellen.
preview
Entwicklung eines Replay Systems (Teil 52): Die Dinge werden kompliziert (IV)

Entwicklung eines Replay Systems (Teil 52): Die Dinge werden kompliziert (IV)

In diesem Artikel werden wir den Mauszeiger ändern, um die Interaktion mit dem Kontrollindikator zu ermöglichen und einen zuverlässigen und stabilen Betrieb zu gewährleisten.
preview
Entwicklung eines Replay-Systems (Teil 75): Neuer Chart-Handel (II)

Entwicklung eines Replay-Systems (Teil 75): Neuer Chart-Handel (II)

In diesem Artikel geht es um die Klasse C_ChartFloatingRAD. Das ist es, was Chart Trade ausmacht. Doch damit ist die Erklärung noch nicht zu Ende. Wir werden sie im nächsten Artikel vervollständigen, da der Inhalt dieses Artikels recht umfangreich ist und ein tiefes Verständnis erfordert. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Neuronale Netze leicht gemacht (Teil 80): Graph Transformer Generative Adversarial Model (GTGAN)

Neuronale Netze leicht gemacht (Teil 80): Graph Transformer Generative Adversarial Model (GTGAN)

In diesem Artikel werde ich mich mit dem GTGAN-Algorithmus vertraut machen, der im Januar 2024 eingeführt wurde, um komplexe Probleme der Generierung von Architekturlayouts mit Graphenbeschränkungen zu lösen.
preview
Erforschung fortgeschrittener maschineller Lerntechniken bei der Darvas Box Breakout Strategie

Erforschung fortgeschrittener maschineller Lerntechniken bei der Darvas Box Breakout Strategie

Die von Nicolas Darvas entwickelte Darvas-Box-Breakout-Strategie ist ein technischer Handelsansatz, der potenzielle Kaufsignale erkennt, wenn der Kurs einer Aktie über einen festgelegten Bereich der „Box“ ansteigt, was auf eine starke Aufwärtsdynamik hindeutet. In diesem Artikel werden wir dieses Strategiekonzept als Beispiel anwenden, um drei fortgeschrittene Techniken des maschinellen Lernens zu untersuchen. Dazu gehören die Verwendung eines maschinellen Lernmodells zur Generierung von Signalen anstelle von Handelsfiltern, die Verwendung von kontinuierlichen Signalen anstelle von diskreten Signalen und die Verwendung von Modellen, die auf verschiedenen Zeitrahmen trainiert wurden, um Handelsgeschäfte zu bestätigen.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 17): Die Grid-Mart Scalping Strategie mit einem dynamischen Dashboard meistern

Automatisieren von Handelsstrategien in MQL5 (Teil 17): Die Grid-Mart Scalping Strategie mit einem dynamischen Dashboard meistern

In diesem Artikel erforschen wir die Grid-Mart Scalping Strategie und automatisieren sie in MQL5 mit einem dynamischen Dashboard für Echtzeit-Handelseinblicke. Wir erläutern die gitterbasierte Martingale-Logik und die Risikomanagement-Funktionen. Wir begleiten auch die Backtests und den Einsatz für eine solide Performance.
preview
Aufbau eines Handelssystems (Teil 2): Die Wissenschaft der Positionsbestimmung

Aufbau eines Handelssystems (Teil 2): Die Wissenschaft der Positionsbestimmung

Selbst bei einem System mit positiver Erwartungshaltung entscheidet die Positionsgröße darüber, ob Sie Erfolg haben oder zusammenbrechen. Das ist der Dreh- und Angelpunkt des Risikomanagements – die Umsetzung statistischer Erkenntnisse in reale Ergebnisse bei gleichzeitigem Schutz Ihres Kapitals.