Artikel über das Programmieren in MQL4 und MQL5

icon

Lernen Sie die Sprache von Handelsstrategien MQL5 nach den hier veröffentlichten Artikeln, die meisten von denen Sie - die Mitglieder der Community - geschrieben haben. Alle Artikel sind in drei Kategorien aufgeteilt, damit man eine Antwort auf unterschiedliche Fragen des Programmierens schnell finden könnte: "Integration", "Tester", "Handelsstrategien" und vieles mehr.

Verfolgen Sie neue Veröffentlichungen und diskutieren Sie über diese im Forum!

Neuer Artikel
letzte | beste
preview
Neuronales Netz in der Praxis: Pseudoinverse (I)

Neuronales Netz in der Praxis: Pseudoinverse (I)

Heute werden wir uns damit beschäftigen, wie man die Berechnung der Pseudoinverse in der reinen MQL5-Sprache implementiert. Der Code, den wir uns ansehen werden, wird für Anfänger viel komplexer sein, als ich erwartet hatte, und ich bin noch dabei herauszufinden, wie ich ihn auf einfache Weise erklären kann. Betrachten Sie dies also als eine Gelegenheit, einen ungewöhnlichen Code zu lernen. Ruhig und aufmerksam. Obwohl es nicht auf eine effiziente oder schnelle Anwendung abzielt, soll es so didaktisch wie möglich sein.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 2): Übergang zu virtuellen Positionen von Handelsstrategien

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 2): Übergang zu virtuellen Positionen von Handelsstrategien

Lassen Sie uns mit der Entwicklung eines Multiwährungs-EAs mit mehreren parallel arbeitenden Strategien fortfahren. Versuchen wir, die gesamte mit der Eröffnung von Marktpositionen verbundene Arbeit von der Strategieebene auf die Ebene des EA zu verlagern, der die Strategien verwaltet. Die Strategien selbst werden nur virtuell gehandelt, ohne Marktpositionen zu eröffnen.
preview
Der Body im Connexus (Teil 4): Hinzufügen des HTTP-Hauptteils

Der Body im Connexus (Teil 4): Hinzufügen des HTTP-Hauptteils

In diesem Artikel werden wir das Konzept des Body in HTTP-Anfragen untersuchen, das für das Senden von Daten wie JSON und Klartext unerlässlich ist. Wir besprechen und erklären, wie man es richtig mit den entsprechenden Kopfzeilen verwendet. Wir haben auch die Klasse ChttpBody eingeführt, die Teil der Connexus-Bibliothek ist und die Arbeit mit dem Body von Anfragen vereinfacht.
preview
Kategorientheorie in MQL5 (Teil 2)

Kategorientheorie in MQL5 (Teil 2)

Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der in der MQL-Gemeinschaft noch relativ unentdeckt ist. In dieser Artikelserie sollen einige der Konzepte vorgestellt und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die zu Kommentaren und Diskussionen anregt und hoffentlich die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung der Händler fördert.
preview
Entwicklung eines MQTT-Clients für Metatrader 5: ein TDD-Ansatz — Teil 4

Entwicklung eines MQTT-Clients für Metatrader 5: ein TDD-Ansatz — Teil 4

Dieser Artikel ist der vierte Teil einer Serie, die unsere Entwicklungsschritte für einen nativen MQL5-Client für das MQTT-Protokoll beschreibt. In diesem Teil beschreiben wir, was MQTT v5.0 Properties sind, ihre Semantik, wie wir einige von ihnen lesen, und geben ein kurzes Beispiel, wie die Eigenschaften (Properties) zur Erweiterung des Protokolls verwendet werden können.
preview
William-Gann-Methoden (Teil II): Gann Square Indikator erstellen

William-Gann-Methoden (Teil II): Gann Square Indikator erstellen

Wir werden einen Indikator erstellen, der auf dem Gann‘schen 9er-Quadrat basiert, das durch Quadrieren von Zeit und Preis gebildet wird. Wir werden den Code vorbereiten und den Indikator in der Plattform in verschiedenen Zeitintervallen testen.
preview
Funktionsentwicklung mit Python und MQL5 (Teil I): Vorhersage gleitender Durchschnitte für weitreichende AI-Modelle

Funktionsentwicklung mit Python und MQL5 (Teil I): Vorhersage gleitender Durchschnitte für weitreichende AI-Modelle

Die gleitenden Durchschnitte sind bei weitem die besten Indikatoren für die Vorhersage unserer KI-Modelle. Wir können unsere Genauigkeit jedoch noch weiter verbessern, indem wir unsere Daten sorgfältig transformieren. In diesem Artikel wird gezeigt, wie Sie KI-Modelle erstellen können, die in der Lage sind, weiter in die Zukunft zu prognostizieren, als Sie es derzeit tun, ohne dass Ihre Genauigkeit signifikant sinkt. Es ist wirklich bemerkenswert, wie nützlich die gleitenden Durchschnitte sind.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 48): Bill Williams Alligator

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 48): Bill Williams Alligator

Der Alligator-Indikator, der von Bill Williams entwickelt wurde, ist ein vielseitiger Indikator zur Trenderkennung, der klare Signale liefert und häufig mit anderen Indikatoren kombiniert wird. Die MQL5-Assistenten-Klassen und die Assemblierung ermöglichen es uns, eine Vielzahl von Signalen auf der Basis von Mustern zu testen, und so betrachten wir auch diesen Indikator.
preview
Die Strategie des Handel eines Liquiditätshungers

Die Strategie des Handel eines Liquiditätshungers

Die Strategie des Handel eines Liquiditätshungers (liquidity grab) ist eine Schlüsselkomponente von Smart Money Concepts (SMC), die darauf abzielt, die Aktionen institutioneller Marktteilnehmer zu identifizieren und auszunutzen. Dabei werden Bereiche mit hoher Liquidität, wie z. B. Unterstützungs- oder Widerstandszonen, ins Visier genommen, in denen große Aufträge Kursbewegungen auslösen können, bevor der Markt seinen Trend wieder aufnimmt. In diesem Artikel wird das Konzept des Liquiditätshungers im Detail erklärt und der Entwicklungsprozess des Expert Advisor der Liquiditätshunger-Handelsstrategie in MQL5 skizziert.
preview
DoEasy. Steuerung (Teil 2): Arbeiten an der Klasse CPanel

DoEasy. Steuerung (Teil 2): Arbeiten an der Klasse CPanel

Im aktuellen Artikel werde ich einige Fehler im Zusammenhang mit der Handhabung von grafischen Elementen beseitigen und die Entwicklung des CPanel-Steuerelements fortsetzen. Insbesondere werde ich die Methoden zur Einstellung der Parameter der Schriftart implementieren, die standardmäßig für alle Textobjekte des Panels verwendet wird.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 23): FOREX (IV)

Entwicklung eines Replay Systems — Marktsimulation (Teil 23): FOREX (IV)

Jetzt erfolgt die Erstellung an der gleichen Stelle, an der wir die Ticks in Balken umgewandelt haben. Wenn also bei der Konvertierung etwas schief geht, werden wir den Fehler sofort bemerken. Dies liegt daran, dass derselbe Code, der die 1-Minuten-Balken während des schnellen Vorlaufs auf dem Chart platziert, auch für das Positionierungssystem verwendet wird, um die Balken während der normalen Performance zu platzieren. Mit anderen Worten: Der Code, der für diese Aufgabe zuständig ist, wird nirgendwo anders dupliziert. Auf diese Weise erhalten wir ein viel besseres System sowohl für die Instandhaltung als auch für die Verbesserung.
preview
Grafiken in der Bibliothek DoEasy (Teil 100): Verbesserungen im Umgang mit erweiterten grafischen Standardobjekten

Grafiken in der Bibliothek DoEasy (Teil 100): Verbesserungen im Umgang mit erweiterten grafischen Standardobjekten

Im aktuellen Artikel werde ich offensichtliche Fehler bei der gleichzeitigen Behandlung von erweiterten (und Standard-) Grafikobjekten und Formularobjekten auf der Leinwand beseitigen sowie Fehler beheben, die bei dem im vorherigen Artikel durchgeführten Test entdeckt wurden. Der Artikel schließt diesen Teil der Bibliotheksbeschreibung ab.
preview
Neuronales Netz in der Praxis: Geradenfunktion

Neuronales Netz in der Praxis: Geradenfunktion

In diesem Artikel werden wir einen kurzen Blick auf einige Methoden werfen, um eine Funktion zu erhalten, die unsere Daten in der Datenbank darstellen kann. Ich werde nicht im Detail darauf eingehen, wie man Statistiken und Wahrscheinlichkeitsstudien zur Interpretation der Ergebnisse verwendet. Überlassen wir das denjenigen, die sich wirklich mit der mathematischen Seite der Angelegenheit befassen wollen. Die Erforschung dieser Fragen wird entscheidend sein für das Verständnis dessen, was bei der Untersuchung neuronaler Netze eine Rolle spielt. Hier werden wir dieses Thema in aller Ruhe besprechen.
preview
Entwicklung eines MQTT-Clients für Metatrader 5: ein TDD-Ansatz - Teil 5

Entwicklung eines MQTT-Clients für Metatrader 5: ein TDD-Ansatz - Teil 5

Dieser Artikel ist der fünfte Teil einer Serie, die unsere Entwicklungsschritte für einen nativen MQL5-Client für das MQTT 5.0-Protokoll beschreibt. In diesem Teil beschreiben wir die Struktur von PUBLISH-Paketen, wie wir ihre Publish Flags setzen, Topic Name(s) Strings kodieren und Packet Identifier(s) setzen, falls erforderlich.
preview
Популяционные алгоритмы оптимизации: Гибридный алгоритм оптимизации бактериального поиска с генетическим алгоритмом (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)

Популяционные алгоритмы оптимизации: Гибридный алгоритм оптимизации бактериального поиска с генетическим алгоритмом (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)

В статье представлен новый подход к решению оптимизационных задач, путём объединения идей алгоритмов оптимизации бактериального поиска пищи (BFO) и приёмов, используемых в генетическом алгоритме (GA), в гибридный алгоритм BFO-GA. Он использует роение бактерий для глобального поиска оптимального решения и генетические операторы для уточнения локальных оптимумов. В отличие от оригинального BFO бактерии теперь могут мутировать и наследовать гены.
preview
Erstellen einer interaktiven grafischen Nutzeroberfläche in MQL5 (Teil 2): Hinzufügen von Steuerelementen und Reaktionsfähigkeit

Erstellen einer interaktiven grafischen Nutzeroberfläche in MQL5 (Teil 2): Hinzufügen von Steuerelementen und Reaktionsfähigkeit

Die Erweiterung des MQL5-GUI-Panels um dynamische Funktionen kann die Handelserfahrung für die Nutzer erheblich verbessern. Durch die Einbindung interaktiver Elemente, Hover-Effekte und Datenaktualisierungen in Echtzeit wird das Panel zu einem leistungsstarken Werkzeug für moderne Händler.
preview
Implementierung des verallgemeinerten Hurst-Exponenten und des Varianz-Verhältnis-Tests in MQL5

Implementierung des verallgemeinerten Hurst-Exponenten und des Varianz-Verhältnis-Tests in MQL5

In diesem Artikel untersuchen wir, wie der verallgemeinerte Hurst-Exponent und der Varianzverhältnis-Test verwendet werden können, um das Verhalten von Preisreihen in MQL5 zu analysieren.
preview
Einführung in MQL5 (Teil 9): Verstehen und Verwenden von Objekten in MQL5

Einführung in MQL5 (Teil 9): Verstehen und Verwenden von Objekten in MQL5

Lernen Sie, wie Sie Chart-Objekte in MQL5 mit aktuellen und historischen Daten erstellen und anpassen. Dieser projektbasierte Leitfaden hilft Ihnen bei der Visualisierung von Handelsgeschäften und der praktischen Anwendung von MQL5-Konzepten, was die Erstellung von Tools, die auf Ihre Handelsanforderungen zugeschnitten sind, erleichtert.
preview
Nachrichtenhandel leicht gemacht (Teil 5): Ausführen des Handels (II)

Nachrichtenhandel leicht gemacht (Teil 5): Ausführen des Handels (II)

In diesem Artikel wird die Klasse des Handelsmanagements um Kauf- und Sell-Stop-Aufträge für den Handel mit Nachrichtenereignissen erweitert und eine Ablaufbeschränkung für diese Aufträge implementiert, um den Handel über Nacht zu verhindern. Eine Slippage-Funktion wird in den Experten eingebettet, um zu versuchen, mögliche Slippage zu verhindern oder zu minimieren, die bei der Verwendung von Stop-Order im Handel auftreten können, insbesondere bei Nachrichtenereignissen.
preview
Risikobalance beim gleichzeitigen Handel von mehreren Handelsinstrumenten

Risikobalance beim gleichzeitigen Handel von mehreren Handelsinstrumenten

Dieser Artikel ermöglicht es Anfängern, ein Skript für den Risikoausgleich beim gleichzeitigen Handel von mehreren Handelsinstrumenten von Grund auf zu schreiben. Darüber hinaus können erfahrene Nutzer neue Ideen für die Umsetzung ihrer Lösungen in Bezug auf die in diesem Artikel vorgeschlagenen Optionen erhalten.
preview
DoEasy. Dienstfunktionen (Teil 2): Das Muster der „Inside-Bar“

DoEasy. Dienstfunktionen (Teil 2): Das Muster der „Inside-Bar“

In diesem Artikel werden wir uns weiter mit den Preismustern in der DoEasy-Bibliothek beschäftigen. Wir werden auch die Klasse für das Muster der „Inside-Bar“ der Price Action Formationen erstellen.
preview
Datenwissenschaft und ML (Teil 28): Vorhersage mehrerer Futures für EURUSD mithilfe von KI

Datenwissenschaft und ML (Teil 28): Vorhersage mehrerer Futures für EURUSD mithilfe von KI

Bei vielen Modellen der künstlichen Intelligenz ist es üblich, einen einzigen Zukunftswert vorherzusagen. In diesem Artikel werden wir uns jedoch mit der leistungsstarken Technik der Verwendung von maschinellen Lernmodellen zur Vorhersage mehrerer zukünftiger Werte befassen. Dieser Ansatz, der als mehrstufige Prognose bekannt ist, ermöglicht es uns, nicht nur den Schlusskurs von morgen, sondern auch den von übermorgen und darüber hinaus vorherzusagen. Durch die Beherrschung mehrstufiger Prognosen können Händler und Datenwissenschaftler tiefere Einblicke gewinnen und fundiertere Entscheidungen treffen, was ihre Vorhersagefähigkeiten und strategische Planung erheblich verbessert.
preview
DoEasy. Steuerung (Teil 33): Vertikale Bildlaufleiste

DoEasy. Steuerung (Teil 33): Vertikale Bildlaufleiste

In diesem Artikel werden wir die Entwicklung der grafischen Elemente der DoEasy-Bibliothek fortsetzen und das vertikale Scrollen von Formularobjekt-Steuerelementen sowie einige nützliche Funktionen und Methoden hinzufügen, die in Zukunft benötigt werden.
preview
Risikomanager für den algorithmischen Handel

Risikomanager für den algorithmischen Handel

Ziel dieses Artikels ist es, die Notwendigkeit des Einsatzes eines Risikomanagers zu beweisen und die Prinzipien der Risikokontrolle im algorithmischen Handel in einer eigenen Klasse zu implementieren, damit jeder die Wirksamkeit des Ansatzes der Risikostandardisierung im Intraday-Handel und bei Investitionen auf den Finanzmärkten überprüfen kann. In diesem Artikel werden wir eine Risikomanager-Klasse für den algorithmischen Handel erstellen. Dies ist eine logische Fortsetzung des vorangegangenen Artikels, in dem wir die Erstellung eines Risikomanagers für den manuellen Handel besprochen haben.
preview
Stimmungsanalyse auf Twitter mit Sockets

Stimmungsanalyse auf Twitter mit Sockets

Dieser innovative Trading-Bot integriert MetaTrader 5 mit Python, um die Stimmungsanalyse sozialer Medien in Echtzeit für automatisierte Handelsentscheidungen zu nutzen. Durch die Analyse der Twitter-Stimmung in Bezug auf bestimmte Finanzinstrumente übersetzt der Bot Trends in den sozialen Medien in umsetzbare Handelssignale. Es nutzt eine Client-Server-Architektur mit Socket-Kommunikation, die eine nahtlose Interaktion zwischen den Handelsfunktionen von MT5 und der Datenverarbeitungsleistung von Python ermöglicht.
preview
Klassische Strategien neu interpretieren (Teil 13): Minimale Verzögerung des Kreuzens von gleitenden Durchschnitten

Klassische Strategien neu interpretieren (Teil 13): Minimale Verzögerung des Kreuzens von gleitenden Durchschnitten

Der gleitende Durchschnitt ist bei den Händlern in unserer Gemeinschaft weithin bekannt, und doch hat sich der Kern der Strategie seit ihrer Einführung nur wenig verändert. In dieser Diskussion werden wir Ihnen eine leichte Anpassung der ursprünglichen Strategie vorstellen, die darauf abzielt, den in der Handelsstrategie vorhandenen Verzögerung zu minimieren. Alle Fans der ursprünglichen Strategie könnten in Erwägung ziehen, die Strategie entsprechend den Erkenntnissen, die wir heute diskutieren werden, zu überarbeiten. Durch die Verwendung von 2 gleitenden Durchschnitten mit der gleichen Periodenlänge wird die Verzögerung in der Handelsstrategie erheblich reduziert, ohne dass die Grundprinzipien der Strategie verletzt werden.
preview
Kategorientheorie in MQL5 (Teil 3)

Kategorientheorie in MQL5 (Teil 3)

Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der in der MQL-Gemeinschaft noch relativ unentdeckt ist. In dieser Artikelserie sollen einige der Konzepte vorgestellt und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die Einblicke gewährt und hoffentlich die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung von Händlern fördert.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 3): Überarbeitung der Architektur

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 3): Überarbeitung der Architektur

Wir haben bereits einige Fortschritte bei der Entwicklung eines Mehrwährungs-EAs mit mehreren parallel arbeitenden Strategien gemacht. In Anbetracht der gesammelten Erfahrungen sollten wir die Architektur unserer Lösung überprüfen und versuchen, sie zu verbessern, bevor wir zu weit vorpreschen.
preview
Einführung in MQL5 (Teil 10): Eine Anleitung für Anfänger zur Arbeit mit den integrierten Indikatoren in MQL5

Einführung in MQL5 (Teil 10): Eine Anleitung für Anfänger zur Arbeit mit den integrierten Indikatoren in MQL5

Dieser Artikel führt in die Arbeit mit integrierten Indikatoren in MQL5 ein und konzentriert sich auf die Erstellung eines RSI-basierten Expert Advisors (EA) mit einem projektbasierten Ansatz. Sie werden lernen, RSI-Werte abzurufen und zu nutzen, Liquiditätsdurchbrüche zu handhaben und die Handelsvisualisierung mit Chart-Objekten zu verbessern. Darüber hinaus wird in dem Artikel ein wirksames Risikomanagement hervorgehoben, einschließlich der Festlegung eines prozentualen Risikos, der Umsetzung von Risiko-Ertrags-Verhältnissen und der Anwendung von Risikomodifikationen zur Sicherung von Gewinnen.
preview
Algorithmen zur Optimierung mit Populationen: Binärer genetischer Algorithmus (BGA). Teil I

Algorithmen zur Optimierung mit Populationen: Binärer genetischer Algorithmus (BGA). Teil I

In diesem Artikel werden wir verschiedene Methoden untersuchen, die in binären genetischen und anderen Populationsalgorithmen verwendet werden. Wir werden uns die Hauptkomponenten des Algorithmus, wie Selektion, Crossover und Mutation, und ihre Auswirkungen auf die Optimierung ansehen. Darüber hinaus werden wir Methoden der Datendarstellung und ihre Auswirkungen auf die Optimierungsergebnisse untersuchen.
preview
Selbstoptimierender Expert Advisor mit MQL5 und Python (Teil VI): Die Vorteile des tiefen doppelten Abstiegs nutzen

Selbstoptimierender Expert Advisor mit MQL5 und Python (Teil VI): Die Vorteile des tiefen doppelten Abstiegs nutzen

Das traditionelle maschinelle Lernen lehrt die Praktiker, darauf zu achten, dass ihre Modelle nicht übermäßig angepasst werden. Diese Ideologie wird jedoch durch neue Erkenntnisse in Frage gestellt, die von fleißigen Forschern aus Harvard veröffentlicht wurden, die herausgefunden haben, dass das, was als Überanpassung erscheint, unter Umständen das Ergebnis einer vorzeitigen Beendigung Ihrer Trainingsverfahren ist. Wir werden zeigen, wie wir die in der Forschungsarbeit veröffentlichten Ideen nutzen können, um unseren Einsatz von KI bei der Prognose von Ergebnissen zu verbessern.
preview
Handel mit dem MQL5 Wirtschaftskalender (Teil 1): Beherrschung der Funktionen des MQL5-Wirtschaftskalenders

Handel mit dem MQL5 Wirtschaftskalender (Teil 1): Beherrschung der Funktionen des MQL5-Wirtschaftskalenders

In diesem Artikel untersuchen wir, wie der MQL5-Wirtschaftskalender für den Handel verwendet werden kann, indem wir zunächst seine Kernfunktionen verstehen. Anschließend implementieren wir wichtige Funktionen des Wirtschaftskalenders in MQL5, um relevante Nachrichtendaten für Handelsentscheidungen zu extrahieren. Abschließend zeigen wir auf, wie diese Informationen genutzt werden können, um Handelsstrategien effektiv zu verbessern.
preview
Selbstoptimierende Expert Advisor in MQL5 (Teil 4): Dynamische Positionsgrößen

Selbstoptimierende Expert Advisor in MQL5 (Teil 4): Dynamische Positionsgrößen

Der erfolgreiche Einsatz des algorithmischen Handels erfordert kontinuierliches, interdisziplinäres Lernen. Die unendlichen Möglichkeiten können jedoch jahrelange Bemühungen verschlingen, ohne greifbare Ergebnisse zu liefern. Um dieses Problem zu lösen, schlagen wir einen Rahmen vor, der die Komplexität schrittweise einführt und es den Händlern ermöglicht, ihre Strategien iterativ zu verfeinern, anstatt sich für unbestimmte Zeit auf ungewisse Ergebnisse festzulegen.
preview
Portfolio-Optimierung in Python und MQL5

Portfolio-Optimierung in Python und MQL5

Dieser Artikel befasst sich mit fortgeschrittenen Portfolio-Optimierungstechniken unter Verwendung von Python und MQL5 mit MetaTrader 5. Es wird gezeigt, wie Algorithmen für die Datenanalyse, die Vermögensallokation und die Generierung von Handelssignalen entwickelt werden können, wobei die Bedeutung datengestützter Entscheidungsfindung im modernen Finanzmanagement und bei der Risikominderung hervorgehoben wird.
preview
DoEasy. Steuerung (Teil 10): WinForms-Objekte - Animieren der Nutzeroberfläche

DoEasy. Steuerung (Teil 10): WinForms-Objekte - Animieren der Nutzeroberfläche

Nun ist es an der Zeit, die grafische Oberfläche zu animieren, indem die Funktionsweise für die Interaktion von Objekten mit Nutzern und Objekten implementiert wird. Die neue Funktionsweise wird auch notwendig sein, damit komplexere Objekte korrekt funktionieren.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 6): Beherrschen der Erkennung von Auftragsblöcken für den Handel des Smart Money

Automatisieren von Handelsstrategien in MQL5 (Teil 6): Beherrschen der Erkennung von Auftragsblöcken für den Handel des Smart Money

In diesem Artikel automatisieren wir das Erkennen von Auftragsblöcken in MQL5 mithilfe der reinen Preisaktionsanalyse. Wir definieren Auftragsblöcke, implementieren ihre Erkennung und integrieren die automatische Handelsausführung. Schließlich führen wir einen Backtest der Strategie durch, um ihre Leistung zu bewerten.
preview
Saisonale Filterung und Zeitabschnitt für Deep Learning ONNX Modelle mit Python für EA

Saisonale Filterung und Zeitabschnitt für Deep Learning ONNX Modelle mit Python für EA

Können wir bei der Erstellung von Modellen für Deep Learning mit Python von der Saisonalität profitieren? Hilft das Filtern von Daten für die ONNX-Modelle, um bessere Ergebnisse zu erzielen? Welchen Zeitabschnitt sollten wir verwenden? Wir werden all dies in diesem Artikel behandeln.
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 19): Bayes'sche Inferenz

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 19): Bayes'sche Inferenz

Die Bayes'sche Inferenz ist die Anwendung des Bayes-Theorems, um die Wahrscheinlichkeitshypothese zu aktualisieren, wenn neue Informationen zur Verfügung stehen. Dies führt intuitiv zu einer Anpassung in der Zeitreihenanalyse, und so schauen wir uns an, wie wir dies bei der Erstellung von nutzerdefinierten Klassen nicht nur für das Signal, sondern auch für das Money-Management und Trailing-Stops nutzen können.
preview
Integration von MQL5 in Datenverarbeitungspakete (Teil 1): Fortgeschrittene Datenanalyse und statistische Verarbeitung

Integration von MQL5 in Datenverarbeitungspakete (Teil 1): Fortgeschrittene Datenanalyse und statistische Verarbeitung

Die Integration ermöglicht einen nahtlosen Arbeitsablauf, bei dem Finanzrohdaten aus MQL5 in Datenverarbeitungspakete wie Jupyter Lab für erweiterte Analysen einschließlich statistischer Tests importiert werden können.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 20): Symbolische Regression

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 20): Symbolische Regression

Die symbolische Regression ist eine Form der Regression, die von minimalen bis gar keinen Annahmen darüber ausgeht, wie das zugrunde liegende Modell, das die untersuchten Datensätze abbildet, aussehen würde. Obwohl sie mit Bayes'schen Methoden oder neuronalen Netzen implementiert werden kann. Shen wir uns an, wie eine Implementierung mit genetischen Algorithmen helfen kann, eine im MQL5-Assistenten verwendbare Expertensignalklasse anzupassen.