Artikel über das Programmieren in MQL4 und MQL5

icon

Lernen Sie die Sprache von Handelsstrategien MQL5 nach den hier veröffentlichten Artikeln, die meisten von denen Sie - die Mitglieder der Community - geschrieben haben. Alle Artikel sind in drei Kategorien aufgeteilt, damit man eine Antwort auf unterschiedliche Fragen des Programmierens schnell finden könnte: "Integration", "Tester", "Handelsstrategien" und vieles mehr.

Verfolgen Sie neue Veröffentlichungen und diskutieren Sie über diese im Forum!

Neuer Artikel
letzte | beste
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 32): Erstellung eines Price Action 5 Drives des harmonischen Mustersystems

Automatisieren von Handelsstrategien in MQL5 (Teil 32): Erstellung eines Price Action 5 Drives des harmonischen Mustersystems

In diesem Artikel entwickeln wir ein 5-Drives-Mustersystem in MQL5, das steigende und fallende harmonische 5-Drives-Muster unter Verwendung von Umkehrpunkten und Fibonacci-Verhältnissen identifiziert und Handelsgeschäfte mit anpassbaren Einstiegs-, Stop-Loss- und Take-Profit-Levels basierend auf vom Nutzer ausgewählten Optionen ausführt. Wir verbessern den Einblick des Händlers mit visuellem Feedback durch Chart-Objekte wie Dreiecke, Trendlinien und Beschriftungen, um die A-B-C-D-E-F-Musterstruktur klar darzustellen.
preview
Vom Neuling zum Experten: Implementierung von Fibonacci-Strategien im Post-NFP-Handel

Vom Neuling zum Experten: Implementierung von Fibonacci-Strategien im Post-NFP-Handel

Auf den Finanzmärkten gehören die Gesetze des Retracement nach wie vor zu den unbestreitbaren Kräften. Als Faustregel gilt, dass die Kurse immer zurückgehen werden – sei es bei großen Bewegungen oder sogar innerhalb kleinster Tick-Muster, die oft als Zickzack erscheinen. Das Retracement-Muster selbst steht jedoch nie fest; es bleibt ungewiss und unterliegt der Antizipation. Diese Ungewissheit erklärt, warum sich Händler auf mehrere Fibonacci-Niveaus verlassen, von denen jedes eine bestimmte Wahrscheinlichkeit des Einflusses hat. In diesem Beitrag stellen wir eine verfeinerte Strategie vor, die Fibonacci-Techniken anwendet, um die Herausforderungen des Handels kurz nach der Ankündigung wichtiger wirtschaftlicher Ereignisse zu bewältigen. Durch die Kombination von Retracement-Prinzipien mit ereignisgesteuertem Marktverhalten wollen wir zuverlässigere Einstiegs- und Ausstiegsmöglichkeiten aufdecken. Nehmen Sie an der vollständigen Diskussion teil und erfahren Sie, wie Fibonacci für den Handel nach Ereignissen angepasst werden kann.
preview
Entwicklung des Price Action Analysis Toolkit (Teil 41): Aufbau eines statistischen Preis-Level EA in MQL5

Entwicklung des Price Action Analysis Toolkit (Teil 41): Aufbau eines statistischen Preis-Level EA in MQL5

Die Statistik war schon immer das Herzstück der Finanzanalyse. Laut Definition ist Statistik die Disziplin, die sich mit dem Sammeln, Analysieren, Interpretieren und Darstellen von Daten auf sinnvolle Weise befasst. Stellen Sie sich nun vor, dasselbe Rahmenwerk auf Kerzen anzuwenden – und die rohe Preisbewegung in messbare Erkenntnisse zu verdichten. Wie hilfreich wäre es, für einen bestimmten Zeitraum die zentrale Tendenz, die Streuung und die Verteilung des Marktverhaltens zu kennen? In diesem Artikel stellen wir genau diesen Ansatz vor und zeigen, wie statistische Methoden Kerzendaten in klare, umsetzbare Signale verwandeln können.
preview
Die Grenzen des maschinellen Lernens überwinden (Teil 4): Überwindung des irreduziblen Fehlers durch mehrere Prognosehorizonte

Die Grenzen des maschinellen Lernens überwinden (Teil 4): Überwindung des irreduziblen Fehlers durch mehrere Prognosehorizonte

Maschinelles Lernen wird oft durch die Brille der Statistik oder der linearen Algebra betrachtet, aber dieser Artikel betont eine geometrische Perspektive der Modellvorhersagen. Sie zeigt, dass sich die Modelle dem Ziel nicht wirklich annähern, sondern es auf ein neues Koordinatensystem abbilden, was zu einer inhärenten Fehlausrichtung führt, die irreduzible Fehler zur Folge hat. In dem Artikel wird vorgeschlagen, dass mehrstufige Vorhersagen, bei denen die Prognosen des Modells über verschiedene Zeithorizonte hinweg verglichen werden, einen effektiveren Ansatz darstellen als direkte Vergleiche mit dem Ziel. Durch die Anwendung dieser Methode auf ein Handelsmodell zeigt der Artikel erhebliche Verbesserungen der Rentabilität und Genauigkeit, ohne das zugrunde liegende Modell zu verändern.
preview
Pipelines in MQL5

Pipelines in MQL5

In diesem Beitrag befassen wir uns mit einem wichtigen Schritt der Datenaufbereitung für das maschinelle Lernen, der zunehmend an Bedeutung gewinnt. Pipelines für die Datenvorverarbeitung. Dabei handelt es sich im Wesentlichen um eine rationalisierte Abfolge von Datenumwandlungsschritten, mit denen Rohdaten aufbereitet werden, bevor sie in ein Modell eingespeist werden. So uninteressant dies für den Laien auch erscheinen mag, diese „Datenstandardisierung“ spart nicht nur Trainingszeit und Ausführungskosten, sondern trägt auch zu einer besseren Generalisierung bei. In diesem Artikel konzentrieren wir uns auf einige SCIKIT-LEARN Vorverarbeitungsfunktionen, und während wir den MQL5-Assistenten nicht ausnutzen, werden wir in späteren Artikeln darauf zurückkommen.