DoEasy. Steuerung (Teil 33): Vertikale Bildlaufleiste
In diesem Artikel werden wir die Entwicklung der grafischen Elemente der DoEasy-Bibliothek fortsetzen und das vertikale Scrollen von Formularobjekt-Steuerelementen sowie einige nützliche Funktionen und Methoden hinzufügen, die in Zukunft benötigt werden.
Neudefinition der Indikatoren von MQL5 und dem MetaTrader 5
Ein innovativer Ansatz zur Erfassung von Indikatorinformationen in MQL5 ermöglicht eine flexiblere und rationalisierte Datenanalyse, indem Entwickler nutzerdefinierte Eingaben an Indikatoren für sofortige Berechnungen weitergeben können. Dieser Ansatz ist besonders nützlich für den algorithmischen Handel, da er eine bessere Kontrolle über die von den Indikatoren verarbeiteten Informationen ermöglicht und über die traditionellen Beschränkungen hinausgeht.
Visualisierung der Geschäfte auf dem Chart (Teil 1): Auswahl eines Zeitraums für die Analyse
In diesem Artikel werden wir von Grund auf ein Skript zur einfachen Visualisierung von Handelsgeschäften (deals) für die nachträgliche Analyse von Handelsentscheidungen schreiben. Alle notwendigen Informationen über ein einzelnes Geschäft sollen bequem auf dem Chart angezeigt werden, wobei verschiedene Zeitrahmen gezeichnet werden können.
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 7): Der EA Signal Pulse
Nutzen Sie das Potenzial der Multi-Timeframe-Analyse mit „Signal Pulse“, einem MQL5 Expert Advisor, der Bollinger Bänder und den Stochastik Oszillator integriert, um präzise, hochwahrscheinliche Handelssignale zu liefern. Erfahren Sie, wie Sie diese Strategie umsetzen und Kauf- und Verkaufschancen mithilfe von nutzerdefinierten Pfeilen effektiv visualisieren können. Ideal für Händler, die ihr Urteilsvermögen durch automatisierte Analysen über mehrere Zeitrahmen hinweg verbessern möchten.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 17): Handel mit mehreren Währungen
Der Handel mit mehreren Währungen ist nicht standardmäßig verfügbar, wenn ein Expertenberater über den Assistenten zusammengestellt wird. Wir untersuchen 2 mögliche Hacks, die Händler machen können, wenn sie ihre Ideen mit mehr als einem Symbol gleichzeitig testen wollen.
Entwicklung eines Wiedergabesystems (Teil 42): Chart Trader Projekt (I)
Lassen Sie uns etwas Interessanteres schaffen. Ich möchte die Überraschung nicht verderben, also folgen Sie dem Artikel, um ein besseres Verständnis zu erhalten. Gleich zu Beginn dieser Serie über die Entwicklung des Replay/Simulator-Systems habe ich gesagt, dass die MetaTrader 5-Plattform sowohl in dem von uns entwickelten System als auch auf dem realen Markt auf die gleiche Weise verwendet werden soll. Es ist wichtig, dass dies richtig gemacht wird. Niemand möchte trainieren und lernen, mit einem Werkzeug zu kämpfen, während er während des Kampfes ein anderes nutzen muss.
The Disagreement Problem: Diving Deeper into The Complexity Explainability in AI
Dive into the heart of Artificial Intelligence's enigma as we navigate the tumultuous waters of explainability. In a realm where models conceal their inner workings, our exploration unveils the "disagreement problem" that echoes through the corridors of machine learning.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 20): Symbolische Regression
Die symbolische Regression ist eine Form der Regression, die von minimalen bis gar keinen Annahmen darüber ausgeht, wie das zugrunde liegende Modell, das die untersuchten Datensätze abbildet, aussehen würde. Obwohl sie mit Bayes'schen Methoden oder neuronalen Netzen implementiert werden kann. Shen wir uns an, wie eine Implementierung mit genetischen Algorithmen helfen kann, eine im MQL5-Assistenten verwendbare Expertensignalklasse anzupassen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 21): Testen mit Wirtschaftskalenderdaten
Die Daten des Wirtschaftskalenders sind standardmäßig nicht für das Testen mit Expert Advisors im Strategy Tester verfügbar. Wir sehen uns an, wie Datenbanken helfen können, diese Einschränkung zu umgehen. In diesem Artikel untersuchen wir, wie SQLite-Datenbanken verwendet werden können, um Wirtschaftskalender-Nachrichten zu archivieren, sodass assistentengestützte Expert Advisors diese nutzen können, um Handelssignale zu generieren.
Neuronale Netze im Handel: Direktionale Diffusionsmodelle (DDM)
In diesem Artikel werden gerichtete Diffusionsmodelle diskutiert, die datenabhängiges anisotropes und gerichtetes Rauschen in einem Vorwärtsdiffusionsprozess ausnutzen, um aussagekräftige Graphendarstellungen zu erfassen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 50): Der Awesome Oszillator
Der Awesome Oscillator ist ein weiterer Bill-Williams-Indikator, der zur Messung des Momentums verwendet wird. Es kann mehrere Signale generieren, und deshalb überprüfen wir diese auf der Basis von Mustern, wie in früheren Artikeln, indem wir die MQL5-Assistenten-Klassen und -Assembly nutzen.
Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 1): Der Indikator
Dieser Artikel beschreibt die Erstellung eines MQL5-Systems zur Erkennung von Marktregimen unter Verwendung statistischer Methoden wie Autokorrelation und Volatilität. Es enthält Code für Klassen zur Klassifizierung von Trend-, Spannen- und Volatilitätsbedingungen sowie einen nutzerdefinierten Indikator.
Einführung in MQL5 (Teil 16): Aufbau von Expert Advisors mit technischen Chart-Mustern
Dieser Artikel führt Anfänger in den Aufbau eines MQL5 Expert Advisors ein, der ein klassisches technisches Chart-Muster - Kopf und Schultern - identifiziert und handelt. Sie erfahren, wie Sie das Muster anhand der Preisentwicklung erkennen, es auf dem Chart einzeichnen, Einstiegs-, Stop-Loss- und Take-Profit-Levels festlegen und die Handelsausführung auf der Grundlage des Musters automatisieren können.
Datenkennzeichnung für Zeitreihenanalyse (Teil 6): Anwendung und Test des EAs, der ONNX verwendet
In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!
Algorithmen zur Optimierung mit Populationen: Widerstand gegen das Steckenbleiben in lokalen Extremen (Teil I)
In diesem Artikel wird ein einzigartiges Experiment vorgestellt, das darauf abzielt, das Verhalten von Populationsoptimierungsalgorithmen im Zusammenhang mit ihrer Fähigkeit zu untersuchen, lokale Minima bei geringer Populationsvielfalt effizient zu umgehen und globale Maxima zu erreichen. Die Arbeit in dieser Richtung wird weitere Erkenntnisse darüber liefern, welche spezifischen Algorithmen ihre Suche mit den vom Nutzer festgelegten Koordinaten als Ausgangspunkt erfolgreich fortsetzen können und welche Faktoren ihren Erfolg beeinflussen.
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 22): Conditional GANs
Generative Adversarial Networks (GAN) sind eine Kombination von neuronalen Netzen, die sich gegenseitig trainieren, um genauere Ergebnisse zu erzielen. Wir nehmen den bedingten Typ dieser Netze an, da wir eine mögliche Anwendung bei der Vorhersage von Finanzzeitreihen innerhalb einer Klasse von Expertensignalen anstreben.
Neuronale Netze leicht gemacht (Teil 79): Feature Aggregated Queries (FAQ) im Kontext des Staates
Im vorigen Artikel haben wir eine der Methoden zur Erkennung von Objekten in einem Bild kennengelernt. Die Verarbeitung eines statischen Bildes ist jedoch etwas anderes als die Arbeit mit dynamischen Zeitreihen, wie z. B. die Dynamik der von uns analysierten Preise. In diesem Artikel werden wir uns mit der Methode der Objekterkennung in Videos befassen, die dem Problem, das wir lösen wollen, etwas näher kommt.
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 17): Weitere Vorbereitung auf den realen Handel
Derzeit verwendet unser EA die Datenbank, um Initialisierungs-Strings für einzelne Instanzen von Handelsstrategien zu erhalten. Die Datenbank ist jedoch recht groß und enthält viele Informationen, die für den eigentlichen EA-Betrieb nicht benötigt werden. Versuchen wir, die Funktionalität des EA ohne eine obligatorische Verbindung zur Datenbank zu gewährleisten.
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 20): Ordnung in den Ablauf der automatischen Projektoptimierungsphasen bringen (I)
Wir haben bereits eine ganze Reihe von Komponenten entwickelt, die bei der automatischen Optimierung helfen. Bei der Erstellung folgten wir der traditionellen zyklischen Struktur: von der Erstellung eines minimalen funktionierenden Codes bis hin zum Refactoring und dem Erhalt eines verbesserten Codes. Es ist an der Zeit, mit dem Aufräumen unserer Datenbank zu beginnen, die auch eine Schlüsselkomponente in dem von uns geschaffenen System ist.
GIT: Was ist das?
In diesem Artikel werde ich ein sehr wichtiges Werkzeug für Entwickler vorstellen. Wenn Sie mit GIT nicht vertraut sind, lesen Sie diesen Artikel, um eine Vorstellung davon zu bekommen, was es ist und wie man es mit MQL5 verwendet.
Propensity Score in der Kausalinferenz
Der Artikel befasst sich mit dem Thema Abgleich von Kausalschlüssen. Der Abgleich wird für den Vergleich sich ähnlichen Beobachtungen in einem Datensatz. Dies ist notwendig, um kausale Wirkungen korrekt zu bestimmen und Verzerrungen zu beseitigen. Der Autor erklärt, wie dies beim Aufbau von Handelssystemen auf der Grundlage des maschinellen Lernens hilft, die bei neuen Daten, auf denen sie nicht trainiert wurden, stabiler werden. Der Propensity Score (Tendenzbewertung) spielt eine zentrale Rolle und wird häufig bei Kausalschlüssen verwendet.
Entwicklung des Price Action Analysis Toolkit (Teil 27): Liquidity Sweep With MA Filter Tool
Das Verständnis der subtilen Dynamik hinter den Preisbewegungen kann Ihnen einen entscheidenden Vorteil verschaffen. Ein solches Phänomen ist der Liquidity Sweep, eine gezielte Strategie, mit der große Händler, insbesondere Institutionen, die Kurse durch wichtige Unterstützungs- oder Widerstandsniveaus drücken. Diese Niveaus fallen oft mit Gruppen von Stop-Loss-Aufträgen von Privatanlegern zusammen, wodurch Liquiditätslücken entstehen, die große Marktteilnehmer ausnutzen können, um große Positionen mit minimaler Abweichung einzugehen oder zu verlassen.
Kolmogorov-Smirnov-Test bei zwei Stichproben als Indikator für die Nicht-Stationarität von Zeitreihen
Der Artikel befasst sich mit einem der bekanntesten nichtparametrischen Homogenitätstests – dem Kolmogorov-Smirnov-Test mit zwei Stichproben. Es werden sowohl Modelldaten als auch reale Kurse analysiert. Der Artikel enthält auch ein Beispiel für die Konstruktion eines Nicht-Stationaritätsindikators (iSmirnovDistance).
Finden von nutzerdefinierten Währungspaar-Mustern in Python mit MetaTrader 5
Gibt es auf dem Devisenmarkt wiederkehrende Muster und Regelmäßigkeiten? Ich beschloss, mein eigenes System zur Musteranalyse mit Python und MetaTrader 5 zu entwickeln. Eine Art Symbiose aus Mathematik und Programmierung zur Eroberung des Forex.
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 12): External Flow (III) TrendMap
Das Marktgeschehen wird von den Kräften zwischen Bullen und Bären bestimmt. Es gibt bestimmte Niveaus, die der Markt aufgrund der auf ihn wirkenden Kräfte einhält. Fibonacci- und VWAP-Levels sind besonders wirkungsvoll, um das Marktverhalten zu beeinflussen. Begleiten Sie mich in diesem Artikel bei der Erforschung einer Strategie, die auf VWAP und Fibonacci-Levels zur Signalgenerierung basiert.
Automatisieren von Handelsstrategien in MQL5 (Teil 7): Aufbau eines Raster-Handel EA mit dynamischer Losgrößen-Skalierung
In diesem Artikel bauen wir einen Expert Advisor in MQL5 für einen Raster-Handel, der eine dynamische Los-Skalierung verwendet. Wir behandeln die Strategieentwicklung, die Code-Implementierung und den Backtest-Prozess. Abschließend vermitteln wir wichtige Erkenntnisse und bewährte Verfahren zur Optimierung des automatisierten Handelssystems.
Erste Schritte mit MQL5 Algo Forge
Wir stellen die MQL5 Algo Forge vor – ein spezielles Portal für Entwickler des algorithmischem Handels. Es kombiniert die Leistungsfähigkeit von Git mit einer intuitiven Oberfläche für die Verwaltung und Organisation von Projekten innerhalb des MQL5-Ökosystems. Hier können Sie interessanten Autoren folgen, Teams bilden und an algorithmischen Handelsprojekten mitarbeiten.
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 2): Senden von Signalen von MQL5 an Telegram
In diesem Artikel erstellen wir einen in MQL5-Telegram integrierten Expert Advisor, der Moving Average Crossover Signale an Telegram sendet. Wir erläutern den Prozess der Erzeugung von Handelssignalen aus gleitenden Durchschnittsübergängen, die Implementierung des erforderlichen Codes in MQL5 und die Sicherstellung der nahtlosen Integration. Das Ergebnis ist ein System, das Handelswarnungen in Echtzeit direkt an Ihren Telegram-Gruppenchat sendet.
Hochfrequenz-Arbitrage-Handelssystem in Python mit MetaTrader 5
In diesem Artikel werden wir ein Arbitrationssystem erstellen, das in den Augen der Broker legal bleibt, Tausende von synthetischen Preisen auf dem Forex-Markt erstellt, sie analysiert und erfolgreich mit Gewinn handelt.
Datenkennzeichnung für die Zeitreihenanalyse (Teil 5):Anwendung und Test in einem EA mit Socket
In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung (labeling) von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!
Neuronale Netze leicht gemacht (Teil 73): AutoBots zur Vorhersage von Kursbewegungen
Wir fahren fort mit der Erörterung von Algorithmen für das Training von Trajektorievorhersagemodellen. In diesem Artikel werden wir uns mit einer Methode namens „AutoBots“ vertraut machen.
Selbstoptimierende Expert Advisors mit MQL5 und Python erstellen (Teil II): Abstimmung tiefer neuronaler Netze
Modelle für maschinelles Lernen verfügen über verschiedene einstellbare Parameter. In dieser Artikelserie werden wir untersuchen, wie Sie Ihre KI-Modelle mithilfe der SciPy-Bibliothek an Ihren spezifischen Markt anpassen können.
Integration von Broker-APIs mit Expert Advisors unter Verwendung von MQL5 und Python
In diesem Artikel besprechen wir die Implementierung von MQL5 in Verbindung mit Python, um brokerbezogene Operationen durchzuführen. Stellen Sie sich vor, dass ein kontinuierlich laufender Expert Advisor (EA) auf einem VPS gehostet wird, der in Ihrem Namen handelt. An einem bestimmten Punkt wird die Fähigkeit des EA, Mittel zu verwalten, von entscheidender Bedeutung. Dazu gehören Vorgänge wie die Aufladung Ihres Handelskontos und die Einleitung von Abhebungen. In dieser Diskussion werden wir die Vorteile und die praktische Umsetzung dieser Funktionen beleuchten, um eine nahtlose Integration des Fondsmanagements in Ihre Handelsstrategie zu gewährleisten. Bleiben Sie dran!
Nachrichtenhandel leicht gemacht (Teil 4): Leistungsverbesserung
Dieser Artikel befasst sich mit Methoden zur Verbesserung der Laufzeit des Experten im Strategietester. Der Code wird so geschrieben, dass die Zeiten der Nachrichtenereignisse in stündliche Kategorien unterteilt werden. Der Zugriff auf diese Ereigniszeiten erfolgt innerhalb der angegebenen Stunde. Dadurch wird sichergestellt, dass der EA sowohl in Umgebungen mit hoher als auch mit niedriger Volatilität effizient ereignisgesteuerte Trades verwalten kann.
Entwicklung von Analyseinstrumenten für Preisentwicklungen (Teil 1): Der Chart-Projektor
Dieses Projekt zielt darauf ab, den MQL5-Algorithmus zu nutzen, um einen umfassenden Satz von Analyseinstrumenten für MetaTrader 5 zu entwickeln. Diese Instrumente - von Skripten und Indikatoren bis hin zu KI-Modellen und Expert Advisor - automatisieren den Marktanalyseprozess. Mitunter wird diese Entwicklung zu Instrumenten führen, die in der Lage sind, fortgeschrittene Analysen ohne menschliches Zutun durchzuführen und die Ergebnisse auf geeigneten Plattformen vorherzusagen. Keine Gelegenheit wird jemals verpasst werden. Erkunden Sie mit mir den Prozess des Aufbaus einer robusten, maßgeschneiderten Marktanalyse-Instrumentenkasten. Wir werden mit der Entwicklung eines einfachen MQL5-Programms beginnen, das ich Chart-Projektor genannt habe.
Von Python zu MQL5: Eine Reise in quanteninspirierte Handelssysteme
Der Artikel befasst sich mit der Entwicklung eines quanteninspirierten Handelssystems, das von einem Python-Prototyp zu einer MQL5-Implementierung für den realen Handel übergeht. Das System nutzt die Prinzipien der Quanteninformatik wie Überlagerung und Verschränkung, um Marktzustände zu analysieren, obwohl es auf klassischen Computern mit Quantensimulatoren läuft. Zu den wichtigsten Merkmalen gehören ein Drei-Qubit-System zur gleichzeitigen Analyse von acht Marktzuständen, 24-Stunden-Rückblicke und sieben technische Indikatoren für die Marktanalyse. Auch wenn die Genauigkeitsraten bescheiden erscheinen mögen, bieten sie in Verbindung mit geeigneten Risikomanagementstrategien einen erheblichen Vorteil.
Entwicklung des Swing Entries Monitoring (EA)
Wenn sich das Jahr dem Ende zuneigt, denken langfristige Händler oft über die Geschichte des Marktes nach, um sein Verhalten und seine Trends zu analysieren und potenzielle zukünftige Bewegungen zu prognostizieren. In diesem Artikel befassen wir uns mit der Entwicklung eines Expert Advisors (EA) zur langfristigen Überwachung des Einstiegs mit MQL5. Ziel ist es, das Problem verpasster langfristiger Handelsmöglichkeiten zu lösen, das durch manuellen Handel und das Fehlen automatischer Überwachungssysteme verursacht wird. Wir werden eines der am häufigsten gehandelten Paare als Beispiel verwenden, um eine Strategie zu entwickeln und unsere Lösung effektiv zu gestalten.
Einführung in MQL5 (Teil 15): Ein Anfängerleitfaden zur Erstellung nutzerdefinierter Indikatoren (IV)
In diesem Artikel erfahren Sie, wie Sie einen Preisaktionsindikator in MQL5 erstellen und sich dabei auf Schlüsselpunkte wie Tief (L), Hoch (H), Höheres Tief (HL), Höheres Hoch (HH), Tieferes Tief (LL) und Tieferes Hoch (LH) für die Trendanalyse konzentrieren. Sie erfahren auch, wie Sie die Premium- und Discount-Zonen identifizieren, das 50%-Retracement-Level markieren und das Risiko-Ertrags-Verhältnis zur Berechnung von Gewinnzielen nutzen können. Der Artikel befasst sich auch mit der Bestimmung von Einstiegspunkten, Stop Loss (SL) und Take Profit (TP) auf der Grundlage der Trendstruktur.
Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 2): Expert Advisor
Dieser Artikel beschreibt den Aufbau eines adaptiven Expert Advisors (MarketRegimeEA) unter Verwendung des Regime-Detektors aus Teil 1. Er wechselt automatisch die Handelsstrategien und Risikoparameter für steigende, volatile oder Seitwärtsmärkte. Praktische Optimierung, Handhabung von Übergängen und ein Indikator für mehrere Zeitrahmen sind enthalten.
Entwicklung eines Replay Systems (Teil 40): Beginn der zweiten Phase (I)
Heute werden wir über die neue Phase des Replay/Simulator-Systems sprechen. In dieser Phase wird das Gespräch wirklich interessant und sehr inhaltsreich. Ich empfehle Ihnen dringend, den Artikel sorgfältig zu lesen und die darin enthaltenen Links zu nutzen. Dies wird Ihnen helfen, den Inhalt besser zu verstehen.