将ML模型与策略测试器集成(结论):实现价格预测的回归模型
本文描述了一个基于决策树的回归模型的实现。该模型应预测金融资产的价格。我们已经准备好了数据,对模型进行了训练和评估,并对其进行了调整和优化。然而,需要注意的是,该模型仅用于研究目的,不应用于实际交易。
您应该知道的 MQL5 向导技术(第 04 部分):线性判别分析
今天的交易者都是哲学家,几乎总是在寻找新的想法,尝试提炼它们,选择修改或丢弃它们:一个探索性的过程,肯定会花费相当的勤奋程度。 这些系列文章将提出 MQL5 向导应该是交易者在此领域努力的中流砥柱。
在MetaTrader 5中集成隐马尔可夫模型
在本文中,我们将展示如何将使用Python训练的隐马尔可夫模型(Hidden Markov Models, HMMs)集成到MetaTrader 5应用程序中。HMM是一种强大的统计工具,用于对时间序列数据进行建模,其中被建模的系统以不可观察(隐藏)的状态为特征。HMM的一个基本前提是,在特定时间处于给定状态的概率取决于该过程在前一个时间点的状态。
构建K线趋势约束模型(第5部分):通知系统(第一部分)
我们将会把关键的MQL5代码分解成特定的代码段,以展示如何在本系列文章中创建的“趋势约束”指标中集成Telegram和WhatsApp来接收信号通知。这将帮助交易者,无论是新手还是经验丰富的开发者,都能更容易地理解这一概念。首先,我们将介绍MetaTrader 5的通知设置及其对用户的重要性。这将有助于开发者提前做好笔记,以便在他们的系统中做进一步应用。
改编版 MQL5 网格对冲 EA(第 III 部分):优化简单对冲策略(I)
在第三部分中,我们重新审视了早前开发的简单对冲和简单网格智能系统(EA)。我们的重点转移到通过数学分析和蛮力方式完善简单对冲 EA,旨在实现最优策略用法。本文深入探讨了该策略的数学优化,为在日后文章中探索未来基于编码的优化奠定了基础。
开发多币种 EA 交易(第 9 部分):收集单一交易策略实例的优化结果
让我们来概述一下 EA 开发的主要阶段。首先要做的一件事就是优化所开发交易策略的单个实例。让我们试着在一个地方收集优化过程中测试器通过的所有必要信息。
为 MetaTrader 5 开发一款 MQTT 客户端:TDD 方式
本文汇报为 MQL5 开发原生 MQTT 客户端的首次尝试。MQTT 是一种客户端-服务器之间发布/订阅消息的传输协议。它轻巧、开放、简单,并且易于实施。这些特性令其非常适合在多种情况下使用。
在 MQL5 中实现增广迪基–富勒检验
在本文中,我们演示了增广迪基–富勒(Augmented Dickey-Fuller,ADF)检验的实现,并将其应用于使用 Engle-Granger 方法进行协整检验。
种群优化算法:引力搜索算法(GSA)
GSA 是一种受无生命自然启发的种群优化算法。 万幸在算法中实现了牛顿的万有引力定律,对物理物体相互作用进行建模的高可靠性令我们能够观察到行星系统和星系团的迷人舞蹈。 在本文中,我将研究最有趣和最原始的优化算法之一。 还提供了空间物体运动的模拟器。
开发多币种 EA 交易 (第 11 部分):自动化优化(第一步)
为了获得一个好的 EA,我们需要为它选择多组好的交易策略实例参数。这可以通过对不同的交易品种运行优化然后选择最佳结果来手动完成。但最好将这项工作委托给程序,并从事更有成效的活动。
神经网络变得轻松(第三十七部分):分散关注度
在上一篇文章中,我们讨论了在其架构中使用关注度机制的关系模型。 这些模型的具体特征之一是计算资源的密集功用。 在本文中,我们将研究于自我关注度模块内减少计算操作数量的机制之一。 这将提高模型的常规性能。
基于隐马尔可夫模型的趋势跟踪波动率预测
隐马尔可夫模型(HMMs)是强大的统计工具,可通过分析可观测的价格波动来识别潜在的市场状态。在交易领域,隐马尔可夫模型通过建模和预测市场状态的转变,可提升波动率预测的准确性,并为趋势跟踪策略提供依据。在本文中,我们将完整介绍一种趋势跟踪策略的开发流程,该策略利用隐马尔可夫模型预测波动率,并将其作为交易信号的过滤条件。
MQL5 中的范畴论 (第 2 部分)
范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,吸引评论和研讨,同时希望在交易者的策略开发中进一步在运用这一非凡的领域。
构建K线趋势约束模型(第九部分):多策略EA(2)
理论上,可以集成至EA中的策略数量没有上限。然而,每新增一种策略都会提升算法复杂度。通过融合多策略架构,EA能够更灵活地适应不同市场环境,从而可能提升整体盈利能力。今天,我们将探讨如何通过MQL5实现理查德·唐奇安(Richard Donchian)的经典通道突破策略,以此进一步拓展我们的趋势约束型EA功能体系。
DRAKON可视化编程语言 - 面向MQL开发人员和客户的通信工具
DRAKON是一种可视化编程语言,旨在简化来自不同领域的专家(生物学家、物理学家、工程师…)与俄罗斯太空项目(例如,Buran可重复使用航天器项目)程序员之间的互动。在这篇文章中,我将讨论DRAKON如何使算法的创建变得容易和直观,即使你从未遇到过代码,以及客户在订购交易机器人时如何更容易解释他们的想法,以及程序员如何在复杂函数中减少错误。
MQL5 中的范畴论 (第 5 部分):均衡器
范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
彗星尾算法(CTA)
在这篇文章中,我们将探讨彗星尾优化算法(CTA),该算法从独特的太空物体——彗星及其接近太阳时形成的壮观尾部中汲取灵感。该算法基于彗星及其尾部运动的概念设计而成,旨在寻找优化问题中的最优解。
使用MQL5和Python集成经纪商API与智能交易系统
在本文中,我们将探讨如何将MQL5与Python相结合,以执行与经纪商相关的操作。想象一下,您有一个持续运行的智能交易系统(EA),它托管在虚拟专用服务器(VPS)上,并代表您执行交易。在某个阶段,EA 管理资金的能力变得至关重要。这包括为您的交易账户入金和发起出金等操作。在本文中,我们将阐明这些功能的优势和具体实现方法,从而确保将资金管理无缝地集成到您的交易策略中。敬请关注!
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 4 部分):在 MQL5 中组织类中的函数
本文讨论 MQL5 中从面向过程编码向面向对象编程 (OOP) 的过渡,重点是与 REST API 的集成。今天,我们将讨论如何将 HTTP 请求函数(GET 和 POST)组织到类中。我们将仔细研究代码重构,并展示如何用类方法替换孤立的函数。本文包含实用的示例和测试。
MQL5 中的范畴论 (第 2 部分)
范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,提供洞察力,同时希望在交易者的策略开发中进一步运用这一非凡的领域。
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 1 部分):如何在 MQL5 中使用 RestAPI
在本文中,我们将讨论 API(Application Programming Interface,应用程序编程接口)对于不同应用程序和软件系统之间交互的重要性。我们将看到 API 在简化应用程序间交互方面的作用,使它们能够有效地共享数据和功能。
您应当知道的 MQL5 向导技术(第 17 部分):多币种交易
当经由向导组装一款智能系统时,默认情况下,跨多币种交易不可用。我们研究了 2 种可能采取的技巧,可令交易者在同一时间据多个品种测试他们的思路。
量化风险管理方法:应用 VaR 模型优化多货币投资组合(使用 Python 和 MetaTrader 5)
本文探讨了价值风险(VaR)模型在多货币投资组合优化中的潜力。借助 Python 的强大功能和 MetaTrader 5 的功能,我们展示了如何实施 VaR 分析,以实现高效的资金分配和头寸管理。从理论基础到实际实施,文章涵盖了将 VaR——这一最稳健的风险计算系统之一——应用于算法交易的方方面面。
利用 MQL5 的交互式 GUI 改进您的交易图表(第 II 部分):可移动 GUI(II)
依靠我们的以 MQL5 创建可移动 GUI 的深度指南,在您的交易策略和实用程序中解锁动态数据表达的潜力。深入研究面向对象编程的基本原理,并探索如何在同一图表上轻松高效地设计和实现单个或多个可移动 GUI。
价格行为分析工具包开发(第12部分):外部资金流(3)趋势图谱(TrendMap)
市场走势由多头与空头之间的力量博弈所决定。由于作用在这些水平上的力量,市场会尊重某些特定价位水平。斐波那契(Fibonacci)水平和成交量加权平均价(VWAP)水平在影响市场行为方面尤为强大。请随我一同探讨本文中基于VWAP和斐波那契水平生成交易信号的策略。
MetaTrader 5 和 R 进行算法交易新手指南
当我们揭开 R 和 MetaTrader 5 无缝结合的艺术面纱时,您将开始一场金融分析与算法交易的精彩探索。本文是您将 R 语言中的分析技巧与 MetaTrader 5 强大的交易功能连接起来的指南。
股票交易中的非线性回归模型
股票交易中的非线性回归模型:能否预测金融市场?让我们考虑创建一个用于预测欧元兑美元(EURUSD)汇率的模型,并基于此模型制作两个交易机器人——分别使用Python和MQL5语言。
创建 MQL5-Telegram 集成 EA 交易 (第二部分):从 MQL5 发送信号到 Telegram
在本文中,我们创建了一个 MQL5-Telegram 集成 EA 交易,将移动平均线交叉信号发送到 Telegram。我们详细介绍了从移动平均线交叉生成交易信号的过程,在 MQL5 中实现必要的代码,并确保集成无缝工作。结果是系统可以直接向您的 Telegram 群聊提供实时交易提醒。
在 MQL5 中创建交易管理员面板(第一部分):构建消息接口
本文讨论了为 MetaTrader 5 创建一个消息接口,旨在帮助系统管理员在平台内直接与其他交易者进行沟通。MQL5 最近与社交平台的整合使得信号能够通过不同渠道快速广播。想象一下,只需点击“是”或“否”就能确认发送信号。继续阅读以了解更多信息。
创建 MQL5-Telegram 集成 EA 交易(第 5 部分):从 Telegram 向 MQL5 发送命令并接收实时响应
在本文中,我们创建了几个类来促进 MQL5 和 Telegram 之间的实时通信。我们专注于从 Telegram 获取命令,解码和解释它们,并发送适当的响应。最后,我们确保这些交互在交易环境中得到有效测试和运行。
种群优化算法:鸟群算法(BSA)
本文探讨了受自然界鸟类集群行为启发而产生的基于鸟群的算法(BSA)。BSA中的个体采用不同的搜索策略,包括在飞行、警戒和觅食行为之间的切换,使得该算法具有多面性。它利用鸟类集群、交流、适应性、领导与跟随等规则来高效地找到最优解。
因果推理中的倾向性评分
本文探讨因果推理中的匹配问题。匹配用于比较数据集中的类似观察结果,这对于正确确定因果关系和消除偏见是必要的。作者解释了这如何有助于构建基于机器学习的交易系统,这些系统在没有经过训练的新数据上变得更加稳定。倾向性评分在因果推理中起着核心作用并被广泛应用。
MQL5 交易管理面板开发指南(第六部分):交易管理面板(续篇)
在本文中,我们对多功能管理面板的“交易面板”进行升级。我们引入一个强大的辅助函数,大幅简化代码,提高可读性、可维护性与运行效率。同时演示如何无缝集成更多按钮,并优化界面,以支持更广泛的交易任务。无论是持仓管理、订单调整,还是简化交互,本文将助您打造稳健且易用的交易管理面板。
群体优化算法:带电系统搜索(CSS)算法
在本文中,我们将探讨另一种受无生命自然启发的优化算法--带电系统搜索(Charged System Search,CSS)算法。本文旨在介绍一种基于物理和力学原理的新的优化算法。
在MQL5中创建交易管理员面板(第六部分):多功能界面(一)
交易管理员的角色不仅限于Telegram通信,他们还可以参与各种控制活动,包括订单管理、持仓跟踪和界面定制。在本文中,我们将分享有关扩展程序以支持MQL5中多种功能的实用见解。此次更新旨在克服当前管理员面板主要聚焦于通信这一局限,使其能够处理更广泛的任务。
种群优化算法:社群进化(ESG)
我们将研究构造多种群算法的原理。作为该算法类别的一个示例,我们将查看新的自定义算法 — 社群进化(ESG)。我们将分析该算法的基本概念、种群互动机制和优势,并检查其在优化问题中的表现。