时间序列分类问题中的因果推理
在本文中,我们将研究使用机器学习的因果推理理论,以及 Python 中的自定义方法实现。因果推理和因果思维植根于哲学和心理学,在我们理解现实中起着重要作用。
开发多币种 EA 交易(第 1 部分):多种交易策略的协作
交易策略是多种多样的,因此,或许可以采用几种策略并行运作,以分散风险,提高交易结果的稳定性。但是,如果每个策略都作为单独的 EA 交易来实现,那么在一个交易账户上管理它们的工作就会变得更加困难。为了解决这个问题,在一个 EA 中实现不同交易策略的操作是合理的。
种群优化算法:改变概率分布的形状和位移,并基于智能头足类生物(SC)进行测试
本文研究了改变概率分布形状对优化算法性能的影响。我们将进行的实验,会用到智能头足类生物(SC)测试算法,从而评估优化问题背景下各种概率分布的效能。
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 4 部分):在 MQL5 中组织类中的函数
本文讨论 MQL5 中从面向过程编码向面向对象编程 (OOP) 的过渡,重点是与 REST API 的集成。今天,我们将讨论如何将 HTTP 请求函数(GET 和 POST)组织到类中。我们将仔细研究代码重构,并展示如何用类方法替换孤立的函数。本文包含实用的示例和测试。
MetaTrader 5 和 R 进行算法交易新手指南
当我们揭开 R 和 MetaTrader 5 无缝结合的艺术面纱时,您将开始一场金融分析与算法交易的精彩探索。本文是您将 R 语言中的分析技巧与 MetaTrader 5 强大的交易功能连接起来的指南。
为 Metatrader 5 开发 MQTT 客户端:TDD 方法 - 第 5 部分
本文是系列文章的第五部分,介绍了我们为 MQTT 5.0 协议开发本地 MQL5 客户端的步骤。在这一部分中,我们将介绍 PUBLISH 数据包的结构、如何设置其发布标志(Publish Flag)、如何对主题名称(Topic Name)字符串进行编码,以及在需要时如何设置数据包标识符(Packet Identifier)。
在 MQL5 中实现增广迪基–富勒检验
在本文中,我们演示了增广迪基–富勒(Augmented Dickey-Fuller,ADF)检验的实现,并将其应用于使用 Engle-Granger 方法进行协整检验。
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 3 部分):在 MQL5 中创建自动移动和测试脚本
本文讨论在 Python 中实现井字游戏中的自动移动,并与 MQL5 函数和单元测试集成。目标是通过在 MQL5 中进行测试,提高游戏的互动性并确保系统的可靠性。本文内容包括游戏逻辑开发、集成和实际测试,最后将介绍动态游戏环境和强大集成系统的创建。
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 2 部分):用于与井字游戏 RestAPI 进行 HTTP 交互的 MQL5 函数
在本文中,我们将讨论 MQL5 如何与 Python 和 FastAPI 交互,使用 MQL5 中的 HTTP 调用与 Python 开发的井字游戏交互。这篇文章讨论了使用 FastAPI 为这种集成创建一个 API,并提供了一个 MQL5 测试脚本,突出了 MQL5 的多功能性、Python 的简易性以及 FastAPI 在连接不同技术以创建创新解决方案方面的效果。
MQL5 中的组合对称交叉验证
在本文中,我们介绍使用纯 MQL5 语言实现组合对称交叉验证的情况,以衡量使用策略测试器的慢速完全算法优化策略后可能出现的过拟合程度。
CatBoost 模型中的交叉验证和因果推理基础及导出为 ONNX 格式
本文提出了使用机器学习创建 EA 交易的方法。
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 1 部分):如何在 MQL5 中使用 RestAPI
在本文中,我们将讨论 API(Application Programming Interface,应用程序编程接口)对于不同应用程序和软件系统之间交互的重要性。我们将看到 API 在简化应用程序间交互方面的作用,使它们能够有效地共享数据和功能。
群体优化算法:带电系统搜索(CSS)算法
在本文中,我们将探讨另一种受无生命自然启发的优化算法--带电系统搜索(Charged System Search,CSS)算法。本文旨在介绍一种基于物理和力学原理的新的优化算法。
Scikit-Learn 库中的分类模型及其导出到 ONNX
在本文中,我们将探讨使用 Scikit-Learn 库中所有可用的分类模型来解决 Fisher 鸢尾花数据集的分类任务。我们将尝试把这些模型转换为 ONNX 格式,并在 MQL5 程序中使用生成的模型。此外,我们将在完整的鸢尾花数据集上比较原始模型与其 ONNX 版本的准确性。
为 Metatrader 5 开发MQTT客户端:TDD方法——第4部分
本文是一系列文章的第四部分,介绍了我们为 MQTT 协议开发本机 MQL5 客户端的步骤。在这一部分中,我们将描述什么是 MQTT v5.0 属性,它们的语义,以及我们如何阅读其中的一些属性,并提供一个如何使用属性来扩展协议的简短示例。
为 MetaTrader 5 开发MQTT客户端:TDD方法——第3部分
本文是一系列文章的第三部分,介绍了我们为MQTT协议开发本机MQL5客户端的步骤。在这一部分中,我们详细描述了如何使用测试驱动开发来实现CONNECT/CONNACK数据包交换的操作行为部分。在这一步骤结束时,我们的客户端必须能够在处理连接尝试可能产生的任何服务器结果时表现得正常。
将ML模型与策略测试器集成(结论):实现价格预测的回归模型
本文描述了一个基于决策树的回归模型的实现。该模型应预测金融资产的价格。我们已经准备好了数据,对模型进行了训练和评估,并对其进行了调整和优化。然而,需要注意的是,该模型仅用于研究目的,不应用于实际交易。
为 MetaTrader 5 开发一款 MQTT 客户端:TDD 方式 - 第2部分
本文是描述 MQTT 协议的本机MQL5客户端开发步骤系列文章的一部分。在这一部分中,我们将描述我们的代码组织、第一个头文件和类,以及我们如何编写测试。本文还包括关于测试驱动开发实践以及我们如何将其应用于该项目的简要说明。
在 ONNX 模型中使用 float16 和 float8 格式
用于表示机器学习模型的数据格式对其有效性起着至关重要的作用。近年来,出现了几种新类型的数据,专门为使用深度学习模型而设计。在本文中,我们将重点介绍两种新的数据格式,它们已在现代模型中广泛采用。
MQL5 中的范畴论 (第 14 部分):线性序函子
本文是更广泛关于以 MQL5 实现范畴论系列的一部分,深入探讨了函子(Functors)。我们实验了如何将线性序映射到集合,这要归功于函子;通过研究两组数据,典型情况下会忽略其间的任何联系。
掌握ONNX:MQL5交易者的游戏规则改变者
深入ONNX的世界,这是一种用于交换机器学习模型的强大的开放标准格式。了解利用ONNX如何彻底改变MQL5中的算法交易,使交易员能够无缝集成尖端的人工智能模型,并将其策略提升到新的高度。揭开跨平台兼容性的秘密,学习如何在您的MQL5交易活动中释放ONNX的全部潜力。通过这篇掌握ONNX的全面指南提升您的交易游戏
DRAKON可视化编程语言 - 面向MQL开发人员和客户的通信工具
DRAKON是一种可视化编程语言,旨在简化来自不同领域的专家(生物学家、物理学家、工程师…)与俄罗斯太空项目(例如,Buran可重复使用航天器项目)程序员之间的互动。在这篇文章中,我将讨论DRAKON如何使算法的创建变得容易和直观,即使你从未遇到过代码,以及客户在订购交易机器人时如何更容易解释他们的想法,以及程序员如何在复杂函数中减少错误。
利用 MQL5 的交互式 GUI 改进您的交易图表(第 II 部分):可移动 GUI(II)
依靠我们的以 MQL5 创建可移动 GUI 的深度指南,在您的交易策略和实用程序中解锁动态数据表达的潜力。深入研究面向对象编程的基本原理,并探索如何在同一图表上轻松高效地设计和实现单个或多个可移动 GUI。
为 MetaTrader 5 开发一款 MQTT 客户端:TDD 方式
本文汇报为 MQL5 开发原生 MQTT 客户端的首次尝试。MQTT 是一种客户端-服务器之间发布/订阅消息的传输协议。它轻巧、开放、简单,并且易于实施。这些特性令其非常适合在多种情况下使用。
在 MQL4 和 MQL5 框架下开发 OpenAI 的 ChatGPT 功能
在本文中,我们将尝鲜来自 OpenAI 的 ChatGPT,从而了解它在降低开发智能系统、指标、和脚本的时间和劳动强度方面的能力。我将引导您快速通览这项技术,并尝试向您展示如何正确地使用它在 MQL4 和 MQL5 中进行编程。
MQL5 中的范畴论 (第 10 部分):幺半群组
本文是以 MQL5 实现范畴论系列的延续。 在此,我们将”幺半群-组“视为常规化幺半群集的一种手段,令它们在更广泛的幺半群集和数据类型中更具可比性。
利用 MQL5 的交互式 GUI 改进您的交易图表(第一部分):可移动 GUI(I)
凭借我们的利用 MQL5 创建可移动 GUI 的综合指南,令您的交易策略或实用程序焕发出呈现动态数据的力量。 深入了解图表事件的核心概念,并学习如何在同一图表上设计和实现简单、多个可移动的 GUI。 本文还探讨了往 GUI 上添加元素的过程,从而增强其功能和美观性。
神经网络变得轻松(第三十七部分):分散关注度
在上一篇文章中,我们讨论了在其架构中使用关注度机制的关系模型。 这些模型的具体特征之一是计算资源的密集功用。 在本文中,我们将研究于自我关注度模块内减少计算操作数量的机制之一。 这将提高模型的常规性能。
MQL5 中的范畴论 (第 7 部分):多域、相对域和索引域
范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
如何将 MetaTrader 5 与 PostgreSQL 连接
本文讲述了将 MQL5 代码与 Postgres 数据库连接的四种方法,并提供了一个分步教程,指导如何使用 Windows 子系统 Linux (WSL) 为 REST API 设置一个开发环境。 所提供 API 的演示应用程序,配以插入数据并查询相应数据表的 MQL5 代码,以及消化此数据的演示智能系统。
MQL5 中的范畴论 (第 5 部分):均衡器
范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
开发回放系统 — 市场模拟(第 02 部分):首次实验(II)
这一次,我们尝试换一种不同的方式来实现 1 分钟的目标。 然而,这项任务并非如人们想象的那么简单。
种群优化算法:猴子算法(MA)
在本文中,我将研究猴子优化算法(MA)。 这些动物克服困难障碍,并到达最难以接近的树顶的能力构成了 MA 算法思想的基础。
开发回放系统 — 市场模拟(第 01 部分):首次实验(I)
如何创建一个系统,让我们在闭市后也能研究市场,甚至模拟市场情况? 在此,我们将开始一系列新的文章,在其中我们将应对这个主题。
MQL5 中的范畴论 (第 2 部分)
范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,提供洞察力,同时希望在交易者的策略开发中进一步运用这一非凡的领域。
种群优化算法:和弦搜索(HS)
在本文中,我将研究和测试最强大的优化算法 — 和弦搜索(HS),其灵感来自寻找完美声音和声的过程。 那么现在什么算法在我们的评级中处于领先地位?
多层感知器和反向传播算法(第 3 部分):与策略测试器集成 - 概述(I)
多层感知器是简单感知器的演变,可以解决非线性可分离问题。 结合反向传播算法,可以有效地训练该神经网络。 在多层感知器和反向传播系列的第 3 部分当中,我们将见识到如何将此技术集成到策略测试器之中。 这种集成将允许使用复杂的数据分析,旨在制定更好的决策,从而优化您的交易策略。 在本文中,我们将讨论这种技术的优点和问题。
种群优化算法:引力搜索算法(GSA)
GSA 是一种受无生命自然启发的种群优化算法。 万幸在算法中实现了牛顿的万有引力定律,对物理物体相互作用进行建模的高可靠性令我们能够观察到行星系统和星系团的迷人舞蹈。 在本文中,我将研究最有趣和最原始的优化算法之一。 还提供了空间物体运动的模拟器。
MQL5 中的范畴论 (第 2 部分)
范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,吸引评论和研讨,同时希望在交易者的策略开发中进一步在运用这一非凡的领域。
MQL5 酷宝书 — 宏观经济事件数据库
本文讨论了基于 SQLite 引擎处理数据库的可能性。 形成的 CDatabase 类就是为了方便和有效地运用 OOP 原则。 随后它会参与宏观经济事件数据库的创建和管理。 本文提供了使用 CDatabase 类的多种方法的示例。