
将您自己的LLM集成到EA中(第2部分):环境部署示例
随着人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该思考如何将强大的语言模型集成到我们的算法交易中。对大多数人来说,很难根据他们的需求对这些强大的模型进行微调,在本地部署,然后将其应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。

种群优化算法:类电磁算法(EM - ElectroMagnetism)
本文讲述在各种优化问题中采用电磁算法(EM - ElectroMagnetism)的原理、方法和可能性。 EM 算法是一种高效的优化工具,能够处理大量数据和多维函数。

MQL5中的范畴论(第22部分):对移动平均的不同看法
在本文中,我们尝试通过只关注一个指标来简化对这些系列中所涵盖概念的说明,这是最常见的,可能也是最容易理解的。它就是移动平均。在这样做的时候,我们会探讨垂直自然变换的意义和可能的应用。

神经网络实验(第 5 部分):常规化传输到神经网络的输入参数
神经网络是交易者工具包中的终极工具。 我们来检查一下这个假设是否成立。 在交易中运用神经网络,MetaTrader 5 是最接近自给自足的媒介。 为此提供了一个简单的解释。

使用 Python 和 MetaTrader5 python 软件包及 ONNX 模型文件进行深度学习预测和排序
本项目涉及在金融市场中使用 Python 进行基于深度学习的预测。我们将探索使用平均绝对误差(MAE)、均方误差(MSE)和R平方(R2)等关键指标测试模型性能的复杂性,并学习如何将所有内容打包到可执行文件中。我们还将制作一个 ONNX 模型文件以及它的 EA。

数据科学与机器学习(第 07 部分):多项式回归
与线性回归不同,多项式回归是一种很灵活的模型,旨在更好地执行线性回归模型无法处理的任务,我们来找出如何在 MQL5 中制作多项式模型,并据其做出积极东西。

神经网络实验(第 4 部分):模板
在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。 若在交易中运用神经网络的话, MetaTrader 5 完全可作为一款自给自足的工具。 简单的解释。

掌握ONNX:MQL5交易者的游戏规则改变者
深入ONNX的世界,这是一种用于交换机器学习模型的强大的开放标准格式。了解利用ONNX如何彻底改变MQL5中的算法交易,使交易员能够无缝集成尖端的人工智能模型,并将其策略提升到新的高度。揭开跨平台兼容性的秘密,学习如何在您的MQL5交易活动中释放ONNX的全部潜力。通过这篇掌握ONNX的全面指南提升您的交易游戏

使用 Python 的深度学习 GRU 模型到使用 EA 的 ONNX,以及 GRU 与 LSTM 模型的比较
我们将指导您完成使用 Python 进行 DL 制作 GRU ONNX 模型的整个过程,最终创建一个用于交易的专家顾问 (EA),然后将 GRU 模型与 LSTM 模型进行比较。

时间序列挖掘的数据标签(第4部分):使用标签数据的可解释性分解
本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!

您应该知道的 MQL5 向导技术(第 04 部分):线性判别分析
今天的交易者都是哲学家,几乎总是在寻找新的想法,尝试提炼它们,选择修改或丢弃它们:一个探索性的过程,肯定会花费相当的勤奋程度。 这些系列文章将提出 MQL5 向导应该是交易者在此领域努力的中流砥柱。

MQL5 中的范畴论 (第 1 部分)
范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,吸引评论和研讨,同时希望在交易者的策略开发中进一步在运用这一非凡的领域。

将ML模型与策略测试器集成(结论):实现价格预测的回归模型
本文描述了一个基于决策树的回归模型的实现。该模型应预测金融资产的价格。我们已经准备好了数据,对模型进行了训练和评估,并对其进行了调整和优化。然而,需要注意的是,该模型仅用于研究目的,不应用于实际交易。

您应该知道的 MQL5 向导技术(第 03 部分):香农(Shannon)熵
今天的交易者都是哲学家,几乎总是在寻找新的想法,尝试提炼它们,选择修改或丢弃它们:一个探索性的过程,肯定会花费相当的勤奋程度。 本系列文章将提出,MQL5 向导应该是交易者的支柱。

神经网络变得轻松(第三十七部分):分散关注度
在上一篇文章中,我们讨论了在其架构中使用关注度机制的关系模型。 这些模型的具体特征之一是计算资源的密集功用。 在本文中,我们将研究于自我关注度模块内减少计算操作数量的机制之一。 这将提高模型的常规性能。

衡量指标信息
机器学习已成为策略制定的流行方法。 虽然人们更强调最大化盈利能力和预测准确性,但处理用于构建预测模型的数据的重要性,仍未受到太多关注。 在本文中,我们研究依据熵的概念来评估预测模型构建的指标的适配性,如 Timothy Masters 的《测试和优调市场交易系统》一书中所述。

种群优化算法:引力搜索算法(GSA)
GSA 是一种受无生命自然启发的种群优化算法。 万幸在算法中实现了牛顿的万有引力定律,对物理物体相互作用进行建模的高可靠性令我们能够观察到行星系统和星系团的迷人舞蹈。 在本文中,我将研究最有趣和最原始的优化算法之一。 还提供了空间物体运动的模拟器。

利用 Python 和 MQL5 构建您的第一个玻璃盒模型
如果我们想从机器学习这些先进技术中获得任何价值,那么很难解释和理解为什么我们的模型偏离我们的期望至关重要。如果对模型内部工作原理的没有全面了解,我们可能无法发现破坏模型性能的错误,我们可能会在无法预测的参照特征上浪费时间,从长远来看,我们有可能没有充分利用这些模型的功能。幸运的是,有一个复杂且维护良好的多合一解决方案,令我们能够准确地看到我们的模型在引擎盖下正在做什么。

MQL5 中的范畴论 (第 2 部分)
范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,吸引评论和研讨,同时希望在交易者的策略开发中进一步在运用这一非凡的领域。

神经网络变得轻松(第五十四部分):利用随机编码器(RE3)进行高效研究
无论何时我们研究强化学习方法时,我们都会面对有效探索环境的问题。解决这个问题通常会导致算法更复杂性,以及训练额外模型。在本文中,我们将看看解决此问题的替代方法。

MQL5 中的范畴论 (第 5 部分):均衡器
范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。

MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推
范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。

神经网络变得简单(第 66 部分):离线学习中的探索问题
使用准备好的训练数据集中的数据对模型进行离线训练,这种方法虽然有一定的优势,但其不利的一面是,环境信息被大大压缩到训练数据集的大小。这反过来又限制了探索的可能性。在本文中,我们将探讨一种方法,这种方法可以用尽可能多样化的数据来填充训练数据集。

MQL5 中的范畴论 (第 2 部分)
范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,提供洞察力,同时希望在交易者的策略开发中进一步运用这一非凡的领域。

重构经典策略:原油
在本文中,我们重新审视一种经典的原油交易策略,旨在通过利用监督机器学习算法来对其进行优化。我们将构建一个最小二乘模型,该模型基于布伦特原油(Brent)和西德克萨斯中质原油(WTI)之间的价差来预测未来布伦特原油价格。我们的目标是找到一个能够预测布伦特原油未来价格变化的领先指标。

神经网络变得简单(第 62 部分):在层次化模型中运用决策转换器
在最近的文章中,我们已看到了运用决策转换器方法的若干选项。该方法不仅可以分析当前状态,还可以分析先前状态的轨迹,以及在其中执行的动作。在本文中,我们将专注于在层次化模型中运用该方法。

神经网络变得轻松(第五十二部分):研究乐观情绪和分布校正
由于模型是基于经验复现缓冲区进行训练,故当前的扮演者政策会越来越远离存储的样本,这会降低整个模型的训练效率。在本文中,我们将查看一些能在强化学习算法中提升样本使用效率的算法。

使用 SMA 和 EMA 自动优化止盈和指标参数的示例
本文介绍了一种用于外汇交易的复杂 EA 交易,它能够将机器学习与技术分析相结合。它专注于交易苹果股票,具有自适应优化、风险管理和多策略的特点。回溯测试显示出良好的结果,盈利能力较高,但也有显著的回撤,表明还有进一步改进的潜力。

群体优化算法:混合蛙跳算法(SFL)
本文详细描述了混合蛙跳(Shuffled Frog-Leaping,SFL)算法及其在求解优化问题中的能力。SFL算法的灵感来源于青蛙在自然环境中的行为,为函数优化提供了一种新的方法。SFL算法是一种高效灵活的工具,能够处理各种数据类型并实现最佳解决方案。

彗星尾算法(CTA)
在这篇文章中,我们将探讨彗星尾优化算法(CTA),该算法从独特的太空物体——彗星及其接近太阳时形成的壮观尾部中汲取灵感。该算法基于彗星及其尾部运动的概念设计而成,旨在寻找优化问题中的最优解。

神经网络变得简单(第 64 部分):保守加权行为克隆(CWBC)方法
据前几篇文章中所执行测试的结果,我们得出的结论是,训练策略的最优性很大程度上取决于所采用的训练集。在本文中,我们将熟悉一种相当简单,但有效的方法来选择轨迹,并据其训练模型。

龟壳演化算法(TSEA)
这是一种受乌龟壳演化启发的独特优化算法。TSEA算法模拟了角质化皮肤区域的逐渐形成,这些区域代表了一个问题的最优解。最优解会变得更加“坚硬”,并位于更靠近外层表面的位置,而不太理想的解则保持“较软”的状态,并位于内部。该算法通过根据质量和距离对解进行聚类,从而保留了不太理想的选项,并提供了灵活性和适应性。