MQL4和MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
彗星尾算法(CTA)

彗星尾算法(CTA)

在这篇文章中,我们将探讨彗星尾优化算法(CTA),该算法从独特的太空物体——彗星及其接近太阳时形成的壮观尾部中汲取灵感。该算法基于彗星及其尾部运动的概念设计而成,旨在寻找优化问题中的最优解。
preview
MQL5 中的高级变量和数据类型

MQL5 中的高级变量和数据类型

不仅在 MQL5 编程中,在任何编程语言中,变量和数据类型都是非常重要的主题。MQL5 变量和数据类型可分为简单类型和高级类型。在这篇文章中,我们将识别并学习高级类型,因为我们在前一篇文章中已经提到过简单类型。
preview
使用MQL5和Python集成经纪商API与智能交易系统

使用MQL5和Python集成经纪商API与智能交易系统

在本文中,我们将探讨如何将MQL5与Python相结合,以执行与经纪商相关的操作。想象一下,您有一个持续运行的智能交易系统(EA),它托管在虚拟专用服务器(VPS)上,并代表您执行交易。在某个阶段,EA 管理资金的能力变得至关重要。这包括为您的交易账户入金和发起出金等操作。在本文中,我们将阐明这些功能的优势和具体实现方法,从而确保将资金管理无缝地集成到您的交易策略中。敬请关注!
preview
在 MQL5 中自动化交易策略(第三部分):用于动态交易管理的RSI区域反转系统

在 MQL5 中自动化交易策略(第三部分):用于动态交易管理的RSI区域反转系统

在本文中,我们将在MQL5中创建一个基于RSI区域反转策略的EA系统,该系统使用RSI信号来触发交易,并采用反转策略来管理亏损。我们实现了一个“ZoneRecovery”类,用以自动化交易入场、反转逻辑和仓位管理。文章最后将进行系统的回测,以优化性能并提升 EA 的有效性。
preview
神经网络变得轻松(第五十二部分):研究乐观情绪和分布校正

神经网络变得轻松(第五十二部分):研究乐观情绪和分布校正

由于模型是基于经验复现缓冲区进行训练,故当前的扮演者政策会越来越远离存储的样本,这会降低整个模型的训练效率。在本文中,我们将查看一些能在强化学习算法中提升样本使用效率的算法。
preview
掌握 MQL5:从入门到精通(第三部分)复杂数据类型和包含文件

掌握 MQL5:从入门到精通(第三部分)复杂数据类型和包含文件

这是描述 MQL5 编程主要方面的系列文章中的第三篇。本文涵盖了上一篇文章中未讨论的复杂数据类型。这些包括结构、联合、类和“函数”数据类型。它还解释了如何使用 #include 预处理器指令为程序添加模块化。
preview
MQL5自动化交易策略(第九部分):构建亚洲盘突破策略的智能交易系统(EA)

MQL5自动化交易策略(第九部分):构建亚洲盘突破策略的智能交易系统(EA)

在本文中,我们将在MQL5中开发一款适用于亚洲盘突破策略的智能交易系统(EA),用来计算亚洲时段的高低价以及使用移动平均线(MA)进行趋势过滤。同时实现动态对象样式、用户自定义时间输入和完善的风险管理。最后演示回测与优化技术,进一步打磨策略表现。
preview
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 4 部分):在 MQL5 中组织类中的函数

开发具有 RestAPI 集成的 MQL5 强化学习代理(第 4 部分):在 MQL5 中组织类中的函数

本文讨论 MQL5 中从面向过程编码向面向对象编程 (OOP) 的过渡,重点是与 REST API 的集成。今天,我们将讨论如何将 HTTP 请求函数(GET 和 POST)组织到类中。我们将仔细研究代码重构,并展示如何用类方法替换孤立的函数。本文包含实用的示例和测试。
preview
同时交易多种工具时平衡风险

同时交易多种工具时平衡风险

本文将帮助初学者从头开始编写一个脚本的实现,用于在同时交易多种工具时平衡风险。此外,它还可以为有经验的用户提供新的思路,使他们可以根据本文提出的方案来实现自己的解决方案。
preview
离散哈特莱变换

离散哈特莱变换

在本文中,我们将探讨频谱分析和信号处理的方法之一——离散哈特莱变换(discrete Hartley transform,DHT)。它可以过滤信号,分析它们的频谱等等。DHT的性能不亚于离散傅立叶变换(discrete Fourier transform,DFT)。然而,与DFT不同的是,DHT只使用实数,这使得它在实践中更方便实现,并且它的应用结果更直观。
preview
使用MQL5和Python构建自优化EA(第二部分):调整深度神经网络

使用MQL5和Python构建自优化EA(第二部分):调整深度神经网络

机器学习模型带有各种可调节的参数。在本系列文章中,我们将探讨如何使用SciPy库来定制您的AI模型,使其适应特定的市场。
preview
使用格兹尔算法的循环分析

使用格兹尔算法的循环分析

在本文中,我们介绍了在Mql5中实现格兹尔算法(Goertzel algorithm)的代码实用程序,并探讨了将该技术用于分析报价的两种方法,以制定可能的策略。
preview
开发回放系统 — 市场模拟(第 07 部分):首次改进(II)

开发回放系统 — 市场模拟(第 07 部分):首次改进(II)

在上一篇文章中,我们针对复现系统进行了一些修复并加入了测试,以确保可能的最佳稳定性。 我们还着手为这个系统创建和使用配置文件。
preview
MQL5 中的范畴论 (第 2 部分)

MQL5 中的范畴论 (第 2 部分)

范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,提供洞察力,同时希望在交易者的策略开发中进一步运用这一非凡的领域。
preview
构建K线图的趋势约束模型(第四部分):为各个趋势波段自定义显示样式

构建K线图的趋势约束模型(第四部分):为各个趋势波段自定义显示样式

在本文中,我们将探讨强大的MQL5语言在MetaTrader 5上绘制各种指标样式的能力。我们还将研究脚本及其在模型中的应用。
preview
神经网络变得简单(第 89 部分):频率增强分解变换器(FEDformer)

神经网络变得简单(第 89 部分):频率增强分解变换器(FEDformer)

到目前为止,我们研究过的所有模型在分析环境状态时都将其当作时间序列。不过,时间序列也能以频率特征的形式表示。在本文中,我将向您介绍一种算法,即利用时间序列的频率分量来预测未来状态。
preview
DoEasy. 控件 (第 24 部分): 提示(Hint)辅助 WinForms 对象

DoEasy. 控件 (第 24 部分): 提示(Hint)辅助 WinForms 对象

在本文中,我将修改为所有 WinForms 函数库对象指定基准对象和主对象的逻辑,并开发一个新的提示(Hint)基准对象,及其若干个派生类,用以示意移动隔板的可能方向。
preview
神经网络变得简单(第 92 部分):频域和时域中的自适应预测

神经网络变得简单(第 92 部分):频域和时域中的自适应预测

FreDF 方法的作者通过实验证实了结合频域和时域进行预测的优势。不过,权重超参数的使用对于非稳态时间序列并非最优。在本文中,我们将领略结合频域和时域预测的自适应方法。
preview
DoEasy. 控件 (第 27 部分): 继续致力 ProgressBar(进度条)WinForms 对象

DoEasy. 控件 (第 27 部分): 继续致力 ProgressBar(进度条)WinForms 对象

在本文中,我将继续开发进度条(ProgressBar)控件。 特别是,我将创建管理进度条和视觉效果的功能。
preview
重塑经典策略(第四部分):标普500指数与美国国债

重塑经典策略(第四部分):标普500指数与美国国债

在本系列文章中,我们使用现代算法分析经典交易策略,以确定是否可以利用人工智能改进这些策略。在今天的文章中,我们将重新审视一种利用标普500指数与美国国债之间关系的经典交易方法。
preview
价格行为分析工具箱开发(第三部分):分析大师 —EA

价格行为分析工具箱开发(第三部分):分析大师 —EA

从一个简单的交易脚本升级到一个功能完备的智能交易系统(EA),可以极大地提升您的交易体验。想象一下,拥有一个能够自动监控您的图表、在后台执行关键计算,并每隔两小时提供定期更新的系统。这款EA将配备分析关键指标的功能,而这些指标对于做出明智的交易决策至关重要,从而确保您能获取最新信息,以有效地调整您的交易策略。
preview
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 1 部分):如何在 MQL5 中使用 RestAPI

开发具有 RestAPI 集成的 MQL5 强化学习代理(第 1 部分):如何在 MQL5 中使用 RestAPI

在本文中,我们将讨论 API(Application Programming Interface,应用程序编程接口)对于不同应用程序和软件系统之间交互的重要性。我们将看到 API 在简化应用程序间交互方面的作用,使它们能够有效地共享数据和功能。
preview
Python、ONNX 和 MetaTrader 5:利用 RobustScaler 和 PolynomialFeatures 数据预处理创建 RandomForest 模型

Python、ONNX 和 MetaTrader 5:利用 RobustScaler 和 PolynomialFeatures 数据预处理创建 RandomForest 模型

在本文中,我们将用 Python 创建一个随机森林(random forest)模型,训练该模型,并将其保存为带有数据预处理功能的 ONNX 管道。之后,我们将在 MetaTrader 5 终端中使用该模型。
preview
交易中的混沌理论(第二部分):深入探索

交易中的混沌理论(第二部分):深入探索

我们继续深入探讨金融市场的混沌理论,这一次我将考虑其对货币和其他资产分析的适用性。
preview
纳什博弈论与隐马尔可夫滤模型在交易中的应用

纳什博弈论与隐马尔可夫滤模型在交易中的应用

这篇文章深入探讨了约翰·纳什的博弈论,特别是纳什均衡,在交易中的应用。文章讨论了交易者如何利用Python脚本和MetaTrader 5,依据纳什的原则来识别并利用市场的无效性。文章还提供了实施这些策略的逐步指南,包括使用隐马尔可夫模型(HMM)和统计分析,以提升交易表现。
preview
您应当知道的 MQL5 向导技术(第 17 部分):多币种交易

您应当知道的 MQL5 向导技术(第 17 部分):多币种交易

当经由向导组装一款智能系统时,默认情况下,跨多币种交易不可用。我们研究了 2 种可能采取的技巧,可令交易者在同一时间据多个品种测试他们的思路。
preview
DoEasy. 控件 (第 8 部分): 基准 WinForms 对象类别,GroupBox 和 CheckBox 控件

DoEasy. 控件 (第 8 部分): 基准 WinForms 对象类别,GroupBox 和 CheckBox 控件

本文研究创建 “GroupBox” 和 “CheckBox” WinForms 对象,以及开发 WinForms 对象类别的基准对象。 所有已创建对象仍然是静态的,即,它们无法与鼠标交互。
preview
种群优化算法:Boids(虚拟生物)算法

种群优化算法:Boids(虚拟生物)算法

本文基于动物集群行为的独特实例,说明Boids算法。反过来说,Boids算法又成为了一整类算法的基础,这类算法统称为“种群智能”。
preview
DoEasy. C控件(第 7 部分):文本标签控件

DoEasy. C控件(第 7 部分):文本标签控件

在本文中,我将创建 WinForms 文本标签控件的对象类。 这样的对象能够将其容器放置在任何位置,而其自身的功能将重现 MS Visual Studio 文本标签的功能。 我们能够为欲显示的文本设置字体参数。
preview
量化风险管理方法:应用 VaR 模型优化多货币投资组合(使用 Python 和 MetaTrader 5)

量化风险管理方法:应用 VaR 模型优化多货币投资组合(使用 Python 和 MetaTrader 5)

本文探讨了价值风险(VaR)模型在多货币投资组合优化中的潜力。借助 Python 的强大功能和 MetaTrader 5 的功能,我们展示了如何实施 VaR 分析,以实现高效的资金分配和头寸管理。从理论基础到实际实施,文章涵盖了将 VaR——这一最稳健的风险计算系统之一——应用于算法交易的方方面面。
preview
风险管理(第二部分):在图形界面中实现手数计算

风险管理(第二部分):在图形界面中实现手数计算

在本文中,我们将探讨如何使用强大的 MQL5 图形控件库来改进和更有效地应用上一篇文章中提出的概念。我们将逐步完成创建一个功能齐全的图形用户界面。我将解释它背后的想法,以及所使用的每种方法的目的和操作。此外,在本文的最后,我们将测试我们创建的面板,以确保它正确运行并实现其既定目标。
preview
利用 Python 实现价格走势离散方法

利用 Python 实现价格走势离散方法

我们将考察使用 Python + MQL5 来离散价格的方法。在本文中,我将分享我开发 Python 函数库的实践经验,其以多种方式实现柱线形成 — 从经典的交易量和范围柱线,到更奇特的方法,如 Renko 和 Kagi。我们将研究三线突破蜡烛和范围柱线,分析它们的统计数据,并尝试定义如何将价格以离散化表示。
preview
软件开发和 MQL5 中的设计模式(第 2 部分):结构模式

软件开发和 MQL5 中的设计模式(第 2 部分):结构模式

在了解了设计模式适用于 MQL5 和其他编程语言,并且对于开发人员开发可扩展、可靠的应用程序有多么重要之后,我们将在本文中继续介绍设计模式。我们将学习另一种类型的设计模式,即结构模式,了解如何利用我们所拥有的类组成更大的结构来设计系统。
preview
神经网络变得简单(第 62 部分):在层次化模型中运用决策转换器

神经网络变得简单(第 62 部分):在层次化模型中运用决策转换器

在最近的文章中,我们已看到了运用决策转换器方法的若干选项。该方法不仅可以分析当前状态,还可以分析先前状态的轨迹,以及在其中执行的动作。在本文中,我们将专注于在层次化模型中运用该方法。
preview
群体优化算法:差分进化(DE)

群体优化算法:差分进化(DE)

在本文中,我们将讨论在前面讨论过的所有算法中最有争议的算法 - 差分进化算法(Differential Evolution,DE)。
preview
解构客户端交易策略的示例

解构客户端交易策略的示例

本文使用框图来检查位于终端的 Experts\Free Robots 文件夹中的基于烛形的训练 EA 的逻辑。
preview
MQL5交易策略自动化(第八部分):构建基于蝴蝶谐波形态的智能交易系统(EA)

MQL5交易策略自动化(第八部分):构建基于蝴蝶谐波形态的智能交易系统(EA)

在本文中,我们将构建一个MQL5智能交易系统(EA),用于检测蝴蝶谐波形态。我们会识别关键转折点,并验证斐波那契(Fibonacci)水平以确认该形态。之后,我们会在图表上可视化该形态,并在得到确认时自动执行交易。
preview
MQL5 中的范畴论 (第 4 部分):跨度、实验、及合成

MQL5 中的范畴论 (第 4 部分):跨度、实验、及合成

范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,提供洞察力,同时希望在交易者的策略开发中进一步运用这一非凡的领域。
preview
多交易品种多周期指标中的 DRAW_ARROW 绘图类型

多交易品种多周期指标中的 DRAW_ARROW 绘图类型

本文将介绍如何绘制多交易品种多周期的箭头指标。我们还将改进类方法,以便正确显示箭头指标的数据,这些数据是根据与当前图表交易品种/周期不一致的交易品种/周期计算的。
preview
交易中的神经网络:状态空间模型

交易中的神经网络:状态空间模型

到目前为止,我们审阅的大量模型都是基于变换器架构。不过,在处理长序列时,它们或许效率低下。在本文中,我们将领略一种替代方向,即基于状态空间模型的时间序列预测。