MQL4和MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
神经网络变得轻松(第三十九部分):Go-Explore,一种不同的探索方式

神经网络变得轻松(第三十九部分):Go-Explore,一种不同的探索方式

我们继续在强化学习模型中研究环境。 在本文中,我们将见识到另一种算法 — Go-Explore,它允许您在模型训练阶段有效地探索环境。
DoEasy 函数库中的时间序列(第六十部分):品种即时报价数据的序列列表
DoEasy 函数库中的时间序列(第六十部分):品种即时报价数据的序列列表

DoEasy 函数库中的时间序列(第六十部分):品种即时报价数据的序列列表

在本文中,我将创建存储单一品种即时报价数据的列表,并在 EA 中检查其创建状态,以及检索所需数据。 每个所用品种各自的即时报价数据列表将来会构成即时报价数据集合。
DoEasy 库中的其他类(第六十七部分):图表对象类
DoEasy 库中的其他类(第六十七部分):图表对象类

DoEasy 库中的其他类(第六十七部分):图表对象类

在本文中,我将创建图表对象类(单个交易金融产品图表),并改进 MQL5 信号对象的集合类,以便在更新列表时也能为存储在集合中的每个信号对象更新其所有参数。
终端服务客户端如何使掌上电脑成为台式机的朋友
终端服务客户端如何使掌上电脑成为台式机的朋友

终端服务客户端如何使掌上电脑成为台式机的朋友

本文描述了通过 PDA 连接已安装 MT4 客户端的远程计算机。
preview
您应该知道的 MQL5 向导技术(第 06 部分):傅里叶(Fourier)变换

您应该知道的 MQL5 向导技术(第 06 部分):傅里叶(Fourier)变换

约瑟夫·傅里叶(Joseph Fourier)引入的傅里叶变换是将复杂的数据波分解构为简单分量波的一种方法。 此功能对交易者来说可能更机敏,本文将对此进行关注。
preview
开发Python交易机器人(第三部分):实现基于模型的交易算法

开发Python交易机器人(第三部分):实现基于模型的交易算法

让我们继续阅读关于使用Python和MQL5开发交易机器人系列的文章。在本文中,我们将用Python中创建一个交易算法。
DoEasy 函数库中的时间序列(第四十四部分):指标缓冲区对象类集合
DoEasy 函数库中的时间序列(第四十四部分):指标缓冲区对象类集合

DoEasy 函数库中的时间序列(第四十四部分):指标缓冲区对象类集合

本文介绍如何创建指标缓冲区对象类的集合。 我计划测试为指标创建和操控任意数量缓冲区的能力(在 MQL 指标中可以创建的最大缓冲区数量为 512)。
DoEasy 函数库中的图形(第八十六部分):图形对象集合 - 管理属性修改
DoEasy 函数库中的图形(第八十六部分):图形对象集合 - 管理属性修改

DoEasy 函数库中的图形(第八十六部分):图形对象集合 - 管理属性修改

在本文中,我将研究跟踪属性值的修改,以及删除和重命名函数库中的图形对象。
preview
来自专业程序员的提示(第三部分):日志。 连接到 Seq 日志收集和分析系统

来自专业程序员的提示(第三部分):日志。 连接到 Seq 日志收集和分析系统

Logger 类的实现能够统一和结构化打印到智能系统栏的日志消息。 连接到 Seq 日志收集和分析系统。 在线监视日志消息。
通过 RSS 馈送发送交易信号
通过 RSS 馈送发送交易信号

通过 RSS 馈送发送交易信号

将交易信号作为 RSS 馈送发出是当下与你社区成员沟通的流行方式,在此我要向你介绍我对这种方式的个人理解。
preview
在 MQL5 中利用 ARIMA 模型进行预测

在 MQL5 中利用 ARIMA 模型进行预测

在本文中,我们继续开发构建 ARIMA 模型的 CArima 类,添加支持预测的直观方法。
如何编写快速非重绘锯齿形调整浪
如何编写快速非重绘锯齿形调整浪

如何编写快速非重绘锯齿形调整浪

本文提出了一种编写锯齿形调整浪类型指标的相当通用的方法。这个方法包含了许多已经描述的锯齿形调整浪,你可以相对容易的创建新的锯齿形调整浪。
preview
交易中的混沌理论(第一部分):简介、在金融市场中的应用和李亚普诺夫指数

交易中的混沌理论(第一部分):简介、在金融市场中的应用和李亚普诺夫指数

混沌理论可以应用于金融市场吗?在这篇文章中,我们将探讨传统混沌理论和混沌系统与比尔·威廉姆斯提出的概念有何不同。
preview
学习如何基于相对活力(Vigor)指数设计交易系统

学习如何基于相对活力(Vigor)指数设计交易系统

我们系列中的新篇章,介绍如何基于最流行的技术指标设计交易系统。 在本文中,我们将学习如何基于相对活力(Vigor)指数指标来做到这一点。
“MQL5 应用商店” 2013 年一季度业绩
“MQL5 应用商店” 2013 年一季度业绩

“MQL5 应用商店” 2013 年一季度业绩

自创立以来,销售自动交易与技术指标的“MQL5 应用商店”已经吸引来了 250 多位开发者,他们发布了 580 款产品。对于那些已通过销售自己的产品获得丰厚利润的“MQL5 应用商店”卖家来讲,2013 年第一季度是相当成功的。
preview
数据科学与机器学习(第 02 部分):逻辑回归

数据科学与机器学习(第 02 部分):逻辑回归

数据分类对于算法交易者和程序员来说是至关重要的。 在本文中,我们将重点关注一种分类逻辑算法,它有帮于我们识别“确定或否定”、“上行或下行”、“做多或做空”。
MVC 设计范式及其应用(第 2 部分):三个组件之间相互作用示意图
MVC 设计范式及其应用(第 2 部分):三个组件之间相互作用示意图

MVC 设计范式及其应用(第 2 部分):三个组件之间相互作用示意图

本文是前一篇文章中所讨论主题的延续和完善:MQL 程序中的 MVC 范式。 在本文中,我们将研究范式的三个组件之间可能的相互作用的示意图。
preview
利用对象轻松制作复杂指标

利用对象轻松制作复杂指标

本文提供了一种创建复杂指标的方法,同时还避免了在处置多个作图板、缓冲区、和/或组合来自多个来源的数据时出现的问题。
preview
手动交易的风险管理

手动交易的风险管理

在本文中,我们将详细探讨如何从头编写手动交易的风险管理类。这个类也可以被用作自动化程序的算法交易者继承的基类。
preview
DoEasy 函数库中的时间序列(第五十部分):多周期、多品种带位移的标准指标

DoEasy 函数库中的时间序列(第五十部分):多周期、多品种带位移的标准指标

在文章里,我们将改进函数库的方法,以便正确显示多品种、多周期的标准指标,即那些在当前品种图表上显示曲线,并可在设置中指定位移的指标。 同样,我们按照标准指标的操纵方法进行排序,并在最终的指标程序里将多余的代码移至函数库区域。
preview
开发交易机器人:Python与MQL5结合(第二部分):模型选择、创建与训练,以及Python自定义测试器

开发交易机器人:Python与MQL5结合(第二部分):模型选择、创建与训练,以及Python自定义测试器

我们继续关于使用Python和MQL5开发交易机器人的系列文章。今天我们将解决模型选择、训练、测试、交叉验证、网格搜索以及模型集成的问题。
preview
以 MQL5 实现 ARIMA 训练算法

以 MQL5 实现 ARIMA 训练算法

在本文中,我们将实现一种算法,该算法应用了 Box 和 Jenkins 的自回归集成移动平均模型,并采用了函数最小化的 Powells 方法。 Box 和 Jenkins 表示,大多数时间序列可以由两个框架中之一个或两个来建模。
preview
在MQL5中构建自适应的自动化交易系统(EA)

在MQL5中构建自适应的自动化交易系统(EA)

建立前瞻性的EA,并根据任何市场进行调整。
preview
DoEasy. 控件 (第 10 部分): WinForms 对象 — 动画界面

DoEasy. 控件 (第 10 部分): WinForms 对象 — 动画界面

现在是时候实现动画图形界面功能,方便用户与对象的交互了。 为了让更复杂的对象能正确工作,还需要新功能。
更好的程序员(第 06 部分):9 个导致有效编码的习惯
更好的程序员(第 06 部分):9 个导致有效编码的习惯

更好的程序员(第 06 部分):9 个导致有效编码的习惯

并非有关编写代码的所有事情总是导致有效编码。 在我的从业经历中,我发现了一些会导致有效编码的习惯。 我们将在本文中详细讨论其中的一些。 对于每一位想要以更少的麻烦来提高自己编写复杂算法的能力的程序员来说,这是一篇必须阅读的文章。
preview
开发回放系统 — 市场模拟(第 02 部分):首次实验(II)

开发回放系统 — 市场模拟(第 02 部分):首次实验(II)

这一次,我们尝试换一种不同的方式来实现 1 分钟的目标。 然而,这项任务并非如人们想象的那么简单。
preview
神经网络变得轻松(第十五部分):利用 MQL5 进行数据聚类

神经网络变得轻松(第十五部分):利用 MQL5 进行数据聚类

我们继续研究聚类方法。 在本文中,我们将创建一个新的 CKmeans 类来实现最常见的聚类方法之一:k-均值。 在测试期间,该模型成功地识别了大约 500 种形态。
preview
用于在EA交易中包含指标的现成模板(第一部分):振荡指标

用于在EA交易中包含指标的现成模板(第一部分):振荡指标

本文从振荡指标类开始研究标准指标,我们将创建现成的模板,用于EA中——声明和设置参数、指标初始化和去初始化,以及从EA中的指标缓冲区接收数据和信号。
preview
种群优化算法:细菌觅食优化(BFO)

种群优化算法:细菌觅食优化(BFO)

大肠杆菌觅食策略激发出科学家创建 BFO 优化算法的灵感。 该算法包含原创思路和有前景的优化方法,值得深入研究。
preview
时间序列的频域表示:功率谱

时间序列的频域表示:功率谱

在本文中,我们将讨论在频域中分析时间序列的相关方法。 构建预测模型时,强调检验时间序列功率谱的效用 在本文中,我们将讨论运用离散傅里叶变换(dft)在频域中分析时间序列获得的一些实用观点。
preview
Heiken-Ashi指标与移动平均指标组合能够提供好的信号吗?

Heiken-Ashi指标与移动平均指标组合能够提供好的信号吗?

策略的组合可能会提供更好的机会,我们可以把指标和形态一起使用,或者更进一步,多个指标和形态一起,这样我们可以获得额外的确认因子。移动平均帮我们确认和驾驭趋势,它们是最为人所知的技术指标,这是因为它们的简单性和为分析增加价值的良好记录。
preview
DoEasy 函数库中的时间序列(第五十二部分):多周期、多品种单缓冲区标准指标的跨平台性质

DoEasy 函数库中的时间序列(第五十二部分):多周期、多品种单缓冲区标准指标的跨平台性质

在本文中,研究创建多品种、多周期标准指标的“建仓/派发”。 略微改进指标依托的函数库类,以便从老旧的 MetaTrader 4 平台切换到 MetaTrader 5 时,基于该函数库开发的程序均可正常运行。
preview
使用Python和MQL5开发机器人(第一部分):数据预处理

使用Python和MQL5开发机器人(第一部分):数据预处理

基于机器学习的交易机器人开发:详细指南本系列文章的第一篇将重点讨论数据的收集与准备以及特征的选择。该项目采用Python编程语言及其相关库,并结合MetaTrader 5平台来实现。
preview
从头开始开发智能交易系统(第 17 部分):访问 web 上的数据(III)

从头开始开发智能交易系统(第 17 部分):访问 web 上的数据(III)

在本文中,我们将继续研究如何从 web 获取数据,并在智能系统中使用它。 这次我们将着手开发一个替代系统。
preview
神经网络变得轻松(第三十八部分):凭借分歧进行自我监督探索

神经网络变得轻松(第三十八部分):凭借分歧进行自我监督探索

强化学习中的一个关键问题是环境探索。 之前,我们已经见识到基于内在好奇心的研究方法。 今天我提议看看另一种算法:凭借分歧进行探索。
preview
在 ONNX 模型中使用 float16 和 float8 格式

在 ONNX 模型中使用 float16 和 float8 格式

用于表示机器学习模型的数据格式对其有效性起着至关重要的作用。近年来,出现了几种新类型的数据,专门为使用深度学习模型而设计。在本文中,我们将重点介绍两种新的数据格式,它们已在现代模型中广泛采用。
preview
改编版 MQL5 网格对冲 EA(第 1 部分):制作一个简单的对冲 EA

改编版 MQL5 网格对冲 EA(第 1 部分):制作一个简单的对冲 EA

我们将创建一个简单的对冲 EA,作为我们更高级的 Grid-Hedge EA 的基础,它将是经典网格和经典对冲策略的混合体。在本文结束时,您将知晓如何创建一个简单的对冲策略,并且您还将知晓人们对于该策略是否能真正 100% 盈利的说法。
preview
MQL5 中的矩阵和向量:激活函数

MQL5 中的矩阵和向量:激活函数

在此,我们将只讲述机器学习的一个方面 — 激活函数。 在人工神经网络中,神经元激活函数会根据一个或一组输入信号的数值,计算输出信号值。 我们将深入研究该过程的内部运作。
preview
MQL5 中的范畴论 (第 7 部分):多域、相对域和索引域

MQL5 中的范畴论 (第 7 部分):多域、相对域和索引域

范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
preview
神经网络变得轻松(第十八部分):关联规则

神经网络变得轻松(第十八部分):关联规则

作为本系列文章的延续,我们来研究无监督学习方法中的另一类问题:挖掘关联规则。 这种问题类型首先用于零售业,即超市等,来分析市场篮子。 在本文中,我们将讨论这些算法在交易中的适用性。