
神经网络变得轻松(第十九部分):使用 MQL5 的关联规则
我们继续研究关联规则。 在前一篇文章中,我们讨论了这种类型问题的理论层面。 在本文中,我将展示利用 MQL5 实现 FP-Growth 方法。 我们还将采用真实数据测试所实现的解决方案。

MQL5 酷宝书 — 宏观经济事件数据库
本文讨论了基于 SQLite 引擎处理数据库的可能性。 形成的 CDatabase 类就是为了方便和有效地运用 OOP 原则。 随后它会参与宏观经济事件数据库的创建和管理。 本文提供了使用 CDatabase 类的多种方法的示例。

制作仪表板以显示指标和EA中的数据
在本文中,我们将创建一个用于指标和EA的仪表板类。这是一个小系列文章中的介绍性文章,其中包含模板以在EA交易中包含和使用标准指标。我将首先创建一个类似于MetaTrader 5数据窗口的面板。

您应该知道的 MQL5 向导技术(第 05 部分):马尔可夫(Markov)链
马尔可夫(Markov)链是一个强大的数学工具,能够针对包括金融在内的各个领域的时间序列数据进行建模和预测。 在金融时间序列建模和预测中,马尔可夫链通常用于模拟金融资产随时间的演变,例如股票价格或汇率。 马尔可夫链模型的主要优点之一是其简单性和易用性。

学习如何基于柴金(Chaikin)振荡器设计交易系统
欢迎阅读我们系列的新篇章,学习如何基于最流行的技术指标设计交易系统。 通读这篇新文章,我们将学习如何基于柴金(Chaikin)振荡器指标设计交易系统。

数据科学与机器学习 — 神经网络(第 02 部分):前馈神经网络架构设计
在我们透彻之前,还有一些涵盖前馈神经网络的次要事情,设计就是其中之一。 针对我们的输入,看看我们如何构建和设计一个灵活的神经网络、隐藏层的数量、以及每个网络的节点。


DoEasy 函数库中的图形(第八十一部分):将图形集成到函数库对象之中
是时候开始把已创建的对象集成到先前所创建的函数库对象当中了。 这最终将会为每个函数库对象赋予自己的图形对象,便于用户与程序之间的交互。

神经网络变得轻松(第三十六部分):关系强化学习
在上一篇文章中讨论的强化学习模型中,我们用到了卷积网络的各种变体,这些变体能够识别原始数据中的各种对象。 卷积网络的主要优点是能够识别对象,无关它们的位置。 与此同时,当物体存在各种变形和噪声时,卷积网络并不能始终表现良好。 这些是关系模型可以解决的问题。

从头开始开发智能交易系统(第 21 部分):新订单系统 (IV)
最后,视觉系统将开始工作,尽管它尚未完工。 在此,我们将完成主要更改。 这只是它们当中很少一部份,但都是必要的。 嗯,整个工作将非常有趣。

MQL5 简介(第 3 部分):掌握 MQL5 的核心元素
在这篇便于初学者阅读的文章中,我们将为您揭开数组、自定义函数、预处理器和事件处理的神秘面纱,并对所有内容进行清晰讲解,让您可以轻松理解每一行代码,从而探索 MQL5 编程的基础知识。加入我们,用一种独特的方法释放 MQL5 的力量,确保每一步都能理解。本文为掌握 MQL5 奠定了基础,强调了对每行代码的解释,并提供了独特而丰富的学习体验。

数据科学和机器学习(第 04 部分):预测当前股市崩盘
在本文中,我将尝试运用我们的逻辑模型,基于美国经济的基本面,来预测股市崩盘,我们将重点关注 NETFLIX 和苹果。利用 2019 年和 2020 年之前的股市崩盘,我们看看我们的模型在当前的厄运和低迷中会表现如何。


DoEasy 函数库中的图形(第八十四部分):抽象标准图形对象的衍生后代类
在本文中,我将研究为终端的抽象标准图形对象创建衍生后代对象。 该类对象定义了所有图形对象通用的属性。 因此,它只是某个种类的图形对象。 为了阐明它与真实图形对象的从属关系,我们需要在衍生后代对象类中设置该图形对象特定的固有属性。

重新审视一种旧时的趋势交易策略:两个随机振荡指标,一个移动平均指标和斐波那契线
旧时的交易策略本文介绍了一种纯技术型的趋势跟踪策略。该策略纯粹是技术性的,使用一些技术指标和工具来传递信号和目标。该策略的组成部分如下:一个周期数为14的随机振荡指标,一个周期数为5的随机振荡指标,一个周期数为200的移动平均指标,一个斐波那契投影工具(用于设定目标)。

处理时间(第二部分):函数
自动判定经纪商时移和 GMT。 与其请求您的经纪商的支持,您可能会从他们那里得到一个不充分的答案(他们很愿意解释时间错位),我们只需自行查看在时间变化的几周内他们如何计算价格 — 但手工操作极其繁琐,我们让程序来做这件事 — 毕竟这就是为什么我们要有一台 PC。

神经网络变得轻松(第四十三部分):无需奖励函数精通技能
强化学习的问题在于需要定义奖励函数。 它可能很复杂,或难以形式化。 为了定解这个问题,我们正在探索一些基于行动和基于环境的方式,无需明确的奖励函数即可学习技能。

从头开始开发智能交易系统(第 13 部分):时序与交易(II)
今天,我们将针对市场分析构建《时序与交易》系统的第二部分。 在前一篇文章《时序与交易(I)》当中,我们讨论了一种替代的图表组织系统,该系统能够针对市场上执行的成交进行最快速的解释。

神经网络实验(第 3 部分):实际应用
在本系列文章中,我会采用实验和非标准方法来开发一个可盈利的交易系统,并检查神经网络是否对交易者有任何帮助。 若在交易中运用神经网络,MetaTrader 5 则可作为近乎自给自足的工具。

DoEasy. 控件 (第 2 部分): 操控 CPanel 类
在本文中,我将剔除一些与操控图形元素相关的错误,并继续开发 CPanel 控件。 尤其是,我将实现为所有面板文本对象设置默认字体参数的方法。

数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析
运用主成分分析(PCA)彻底革新您的金融市场分析! 发现这种强大的技术如何解锁数据中隐藏的形态,揭示潜在的市场趋势,并优化您的投资策略。 在本文中,我们将探讨 PCA 如何为分析复杂的金融数据提供新的视角,揭示传统方法会错过的见解。 发掘 PCA 应用于金融市场数据如何为您带来竞争优势,并帮助您保持领先地位。

从头开始开发智能交易系统(第 19 部分):新订单系统 (II)
在本文中,我们将开发一个“看看发生了什么”类型的图形订单系统。 请注意,我们这次不是从头开始,只不过我们将修改现有系统,在我们交易的资产图表上添加更多对象和事件。

数据科学与机器学习(第 09 部分):以 MQL5 平铺直叙 K-均值聚类
数据挖掘在数据科学家和交易者看来至关重要,因为很多时候,数据并非如我们想象的那么简单。 人类的肉眼无法理解数据集中的不显眼底层形态和关系,也许 K-means 算法可以帮助我们解决这个问题。 我们来发掘一下...


DoEasy 函数库中的图形(第八十三部分):抽象标准图形对象类
在本文中,我将创建抽象图形对象类。 该对象用作创建标准图形对象类的基础。 图形对象拥有多种属性。 因此,在实际创建抽象图形对象类之前,我还需要做很多的准备工作。 这项工作包括在函数库的枚举中设置属性。

利用 MQL5 的交互式 GUI 改进您的交易图表(第 III 部分):简易可移动交易 GUI
加入我们的《利用 MQL5 的交互式 GUI 改进您的交易图表》系列的第 III 部分,我们将探索将交互式 GUI 集成到 MQL5 中的可移动交易仪表板之中。本文建立在第 I 部分和第 II 部分的基础上,指导读者将静态交易仪表板转换为动态、可移动的。


使用HTML和CSS替换的记录(Log)文件
本文中我们将讲述编写一个简单而功能强大的制作html文件的实例, 在过程中我们会学习调整它们的显示, 以及如何在您的EA交易和脚本程序中轻松实现和使用它们.

DoEasy 函数库中的时间序列(第五十四部分):抽象基准指标类的衍生
本文研究基于基准抽象指标衍生对象类的创建。 这些对象所提供功能,可访问创建的指标 EA,收集和获取各种指标和价格数据的数值统计信息。 同样,创建指标对象集合,从中可以访问程序中创建的每个指标的属性和数据。

从头开始开发智能交易系统(第 16 部分):访问 web 上的数据(II)
掌握如何从网络向智能交易系统输入数据并非那么轻而易举。 如果不了解 MetaTrader 5 提供的所有可能性,就很难做到这一点。

从头开始开发智能交易系统(第 24 部分):提供系统健壮性(I)
在本文中,我们将令系统更加可靠,来确保健壮和安全的使用。 实现所需健壮性的途径之一是尝试尽可能多地重用代码,从而能在不同情况下不断对其进行测试。 但这只是其中一种方式。 另一个是采用 OOP。

MQL5 简介(第 2 部分):浏览预定义变量、通用函数和控制流语句
通过我们的 MQL5 系列第二部分,开启一段启迪心灵的旅程。这些文章不仅是教程,还是通往魔法世界的大门,在那里,编程新手和魔法师将团结在一起。是什么让这段旅程变得如此神奇?我们的 MQL5 系列第二部分以令人耳目一新的简洁性脱颖而出,使复杂的概念变得通俗易懂。与我们互动,我们会回答您的问题,确保您获得丰富和个性化的学习体验。让我们建立一个社区,让理解 MQL5 成为每个人的冒险。欢迎来到魔法世界!