开发回放系统(第 51 部分):事情变得复杂(三)
在本文中,我们将研究 MQL5 编程领域最困难的问题之一:如何正确获取图表 ID,以及为什么对象有时不会绘制在图表上。此处提供的材料仅用于教学目的,在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
使用MQL5和Python构建自优化的EA(第四部分):模型堆叠
今天,我们将展示如何构建能够从自身错误中学习的AI驱动的交易应用程序。我们将展示一种称为堆叠(stacking)的技术,我们使用2个模型来做出1个预测。第一个模型通常是较弱的学习器,而第二个模型通常是更强大的模型,它学习较弱学习器的残差。我们的目标是创建一个模型集成,以期获得更高的准确性。
从基础到中级:IF ELSE
在本文中,我们将讨论如何使用 IF 操作符及其伴随者 ELSE。这个语句是所有编程语言中最为重要且最有意义的语句。然而,尽管它易于使用,但如果我们没有使用它的经验以及与之相关的概念,它有时会令人困惑。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
种群优化算法:改变概率分布的形状和位移,并基于智能头足类生物(SC)进行测试
本文研究了改变概率分布形状对优化算法性能的影响。我们将进行的实验,会用到智能头足类生物(SC)测试算法,从而评估优化问题背景下各种概率分布的效能。
为 Metatrader 5 开发 MQTT 客户端:TDD 方法 - 第 5 部分
本文是系列文章的第五部分,介绍了我们为 MQTT 5.0 协议开发本地 MQL5 客户端的步骤。在这一部分中,我们将介绍 PUBLISH 数据包的结构、如何设置其发布标志(Publish Flag)、如何对主题名称(Topic Name)字符串进行编码,以及在需要时如何设置数据包标识符(Packet Identifier)。
您应当知道的 MQL5 向导技术(第 30 部分):聚焦机器学习中的批量归一化
批量归一化是把数据投喂给机器学习算法(如神经网络)之前对数据进行预处理。始终要留意算法所用的激活类型,完成该操作。因此,我们探索在向导组装的智能系统帮助下,能够采取的不同方式,并从中受益。
您应当知道的 MQL5 向导技术(第 14 部分):以 STF 进行多意向时间序列预测
“时空融合”就是在数据建模中同时使用“空间”和“时间”度量值,主要用在遥感,和一系列其它基于视觉的活动,以便更好地了解我们的周边环境。归功于一篇已发表的论文,我们通过验证它对交易者的潜力,采取一种新颖的方式来运用它。
神经网络变得简单(第 81 部分):上下文引导运动分析(CCMR)
在以前的工作中,我们总是评估环境的当前状态。与此同时,指标变化的动态始终保持在“幕后”。在本文中,我打算向您介绍一种算法,其允许您评估 2 个连续环境状态数据之间的直接变化。
将 MQL5 与数据处理包集成(第 3 部分):增强的数据可视化
在本文中,我们将通过结合交互性、分层数据和动态元素等功能,超越基本图表,实现增强的数据可视化,使交易者能够更有效地探索趋势、形态和相关性。
从基础到中级:联合(一)
在这篇文章中,我们将探讨什么是联合。在这里,通过实验,我们将分析可以使用联合的第一种构造。然而,这里展示的只是后续文章将涵盖的一组概念和信息的核心部分。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
从基础到中级:联合(二)
今天我们有一篇非常有趣的文章。我们将研究联合并尝试解决之前讨论的问题。我们还将探讨在应用程序中使用联合时可能出现的一些不寻常的情况。此处提供的材料仅用于教学目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
市场模拟(第四部分):创建 C_Orders 类(一)
在本文中,我们将开始创建 C_Orders 类,以便能够向交易服务器发送订单。我们将循序渐进地进行,目标是通过消息系统详细说明这一过程的具体实现方式。
交易中的神经网络:广义 3D 引用表达分段
在分析市场状况时,我们将其切分为不同的段落,标识关键趋势。然而,传统的分析方法往往只关注一个层面,从而限制了正确的感知。在本文中,我们将学习一种方法,可选择多个对象,以确保对形势进行更全面、及多层次的理解。
开发回放系统(第 50 部分):事情变得复杂 (二)
我们将解决图表 ID 问题,同时开始为用户提供使用个人模板对所需资产进行分析和模拟的能力。此处提供的材料仅用于教学目的,不应被视为除学习和掌握所提供概念以外的任何目的的应用。
您应当知道的 MQL5 向导技术(第 20 部分):符号回归
符号回归是一种回归形式,它从最小、甚或没有假设开始,而底层模型看起来应当映射所研究数据集。尽管它可以通过贝叶斯(Bayesian)方法、或神经网络来实现,但我们看看如何使用遗传算法实现,从而有助于在 MQL5 向导中使用自定义的智能信号类。
MQL5中的逐步特征选择
在本文中,我们介绍一个在MQL5中实现的逐步特征选择算法的改进版本。这种方法基于Timothy Masters在其著作《C++和CUDA C中的现代数据挖掘算法》中概述的技术。
神经网络变得简单(第 88 部分):时间序列密集编码器(TiDE)
为尝试获得最准确的预测,研究人员经常把预测模型复杂化。而反过来又会导致模型训练和维护成本增加。这样的增长总是公正的吗?本文阐述了一种算法,即利用线性模型的简单性和速度,并演示其结果与拥有更复杂架构的最佳模型相当。
价格行为分析工具包开发(第11部分):基于Heikin Ashi(平均K线)信号的智能交易系统(EA)
MQL5为开发者提供了无限可能,助您构建高度定制化的自动化交易系统。您是否知道,它甚至能执行复杂的数学运算?本文将介绍如何将日本Heikin-Ashi(平均K线)技术转化为自动化交易的策略。
开发回放系统(第 47 部分):Chart Trade 项目(六)
最后,我们的 Chart Trade 指标开始与 EA 互动,以交互方式传输信息。因此,在本文中,我们将对该指标进行改进,使其功能足以与任何 EA 配合使用。这样,我们就可以访问 Chart Trade 指标,并像实际连接 EA 一样使用它。不过,我们将以比以前更有趣的方式来实现这一目标。
开发回放系统(第 65 部分):玩转服务(六)
在本文中,我们将研究如何在与回放/模拟应用程序结合使用时实现和解决鼠标指针问题。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
交易中的神经网络:双曲型潜在扩散模型(终篇)
正如 HypDIff 框架所提议,使用各向异性扩散过程针对双曲潜在空间中的初始数据进行编码,助力保留当前市场状况的拓扑特征,并提升其分析品质。在上一篇文章中,我们开始利用 MQL5 实现所提议的方式。今天,我们将继续我们已开始的工作,并得出合乎逻辑的结论。
您应当知道的 MQL5 向导技术(第 48 部分):比尔·威廉姆斯(Bill Williams)短吻鳄
短吻鳄指标是比尔·威廉姆斯(Bill Williams)的创意,是一种多功能趋势识别指标,可产生清晰的信号,并经常与其它指标结合使用。MQL5 向导类和汇编允许我们在形态基础上测试各种信号,故此我们也研究了这个指标。
MQL5 中的高级订单执行算法:TWAP、VWAP 和冰山订单
MQL5 框架通过统一的执行管理器和性能分析器,将机构级执行算法(TWAP、VWAP、冰山订单)带给散户交易者,从而实现更流畅、更精确的订单切片和分析。
数据科学与机器学习(第 20 部分):算法交易洞察,MQL5 中 LDA 与 PCA 之间的较量
在剖析 MQL5 交易环境中这些强大的降维技术的应用程序时,让我们揭示它们背后的秘密。深入探讨线性判别分析(LDA)和主成分分析(PCA)的细微差别,深入了解它们对策略开发和市场分析的影响。
大气云模型优化(ACMO):实战
在本文中,我们将继续深入研究大气云模型优化(ACMO)算法的实现。特别是,我们将讨论两个关键方面:云向低压区域的移动以及降雨模拟,包括液滴的初始化及其在云中的分布。我们还将研究其他在管理云的状态以及确保它们与环境相互作用方面发挥重要作用的方法。
您应当知道的 MQL5 向导技术(第 15 部分):协同牛顿多项式的支持向量机
支持向量机基于预定义的类,按探索增加数据维度的效果进行数据分类。这是一种监督学习方法,鉴于其与多维数据打交道的潜力,它相当复杂。至于本文,我们会研究进行价格行为分类时,如何运用牛顿多项式更有效地做到非常基本的 2-维数据实现。
Connexus中的正文(第四部分):添加HTTP请求正文
在本文中,我们探讨了HTTP请求中的正文概念,这对于发送诸如JSON和纯文本之类的数据至关重要。我们讨论并解释了如何正确地使用正文,并结合适当的头部信息。此外,我们还介绍了Connexus库中的ChttpBody类,它将简化对请求正文的处理。
构建MQL5自优化智能交易系统(EA)(第四部分):动态头寸规模调整
成功运用算法交易需要持续的跨学科学习。然而,无限的可能性可能会耗费数年努力,却无法取得切实成果。为解决这一问题,我们提出一个循序渐进增加复杂性的框架,让交易者能够迭代优化策略,而非将无限时间投入不确定的结果中。
开发回放系统(第 42 部分):图表交易项目(I)
我们来创建一些更有趣的东西。我不想毁掉惊喜,故此紧随本文以便更好地理解。自本系列开发回放/模拟器系统的最开始,我就一直说,我们的意图是按相同的方式使用 MetaTrader 5 平台,无论正在开发的系统中,亦或真实市场中。重点是要正确完成。没有人愿意在训练和学习时用一种工具,而在战斗时不得不换另一种工具。
人工协作搜索算法 (ACS)
人工协作搜索算法ACS (Artificial Cooperative Search) 是一种创新方法,它利用二进制矩阵和基于互利共生与合作的多个动态种群来快速准确地找到最优解。ACS在捕食者与猎物问题上的独特处理方法使其能够在数值优化问题中取得卓越成果。
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇(终章)
在上一篇文章中,我们讲述了多智代自适应框架 MASAAT,其用一组智代的融汇在不同数据尺度下对多模态时间序列进行交叉分析。今天我们将继续实现该框架方法的 MQL5 版本,并将这项工作带至逻辑完结。
价格行为分析工具包开发(第十六部分):引入四分之一理论(2)—— 侵入探测器智能交易系统(EA)
在前一篇文章中,我们介绍了一个名为“四分位绘图脚本”的简单脚本。现在,我们在此基础上更进一步,创建一个用于监控的智能交易系统(EA),以跟踪这些四分位水平,并对这些价位可能引发的市场反应进行监督。请随我们一同探索在本篇文章中开发区域检测工具的过程。
开发回放系统(第 34 部分):订单系统 (三)
在本文中,我们将完成构建的第一阶段。虽然这部分内容很快就能完成,但我将介绍之前没有讨论过的细节。我将解释一些许多人不理解的问题。你知道为什么要按 Shift 或 Ctrl 键吗?