MQL4和MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
使用Python和MQL5进行多交易品种分析(第一部分):纳斯达克集成电路制造商

使用Python和MQL5进行多交易品种分析(第一部分):纳斯达克集成电路制造商

加入我们的讨论,了解如何利用人工智能(AI)优化您的仓位规模和订单数量,以最大化您的投资组合回报。我们将展示如何通过算法识别一个最优的投资组合,并根据您的回报预期或风险承受能力来调整投资组合。在本次讨论中,我们将使用SciPy库和MQL5语言,利用所拥有的全部数据创建一个最优且多样化的投资组合。
preview
将 MQL5 与数据处理包集成(第 1 部分):高级数据分析和统计处理

将 MQL5 与数据处理包集成(第 1 部分):高级数据分析和统计处理

集成实现了无缝的工作流程,来自 MQL5 的原始金融数据可以导入到 Jupyter Lab 等数据处理包中,用于包括统计测试在内的高级分析。
preview
借助成交量精准洞悉交易动态:超越传统OHLC图表

借助成交量精准洞悉交易动态:超越传统OHLC图表

一种将成交量分析与机器学习技术(特别是LSTM神经网络)相结合的算法交易系统。与主要关注价格波动的传统交易方法不同,该系统强调成交量模式及其衍生指标,以预测市场走势。该方法包含三个主要组成部分:成交量衍生指标分析(一阶和二阶导数)、基于LSTM的成交量模式预测,以及传统技术指标。
preview
用于时间序列挖掘的数据标签(第 6 部分):使用 ONNX 在 EA 中应用和测试

用于时间序列挖掘的数据标签(第 6 部分):使用 ONNX 在 EA 中应用和测试

本系列文章介绍了几种时间序列标注方法,可以创建符合大多数人工智能模型的数据,根据需要进行有针对性的数据标注可以使训练好的人工智能模型更符合预期的设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!
preview
DoEasy. 控件 (第 28 部分): 进度条控件中的柱线样式

DoEasy. 控件 (第 28 部分): 进度条控件中的柱线样式

在本文中,我将开发进度条控件的柱线显示样式和说明文本。
preview
您应当知道的 MQL5 向导技术(第 11 部分):数字墙

您应当知道的 MQL5 向导技术(第 11 部分):数字墙

数字墙(Number Walls)是线性回移寄存器的一种变体,其通过检查收敛性来预筛选序列来达到可预测性。我们看看这些思路如何运用在 MQL5。
preview
种群优化算法:细菌觅食优化 — 遗传算法(BFO-GA)

种群优化算法:细菌觅食优化 — 遗传算法(BFO-GA)

本文释义了一种解决优化问题的新方式,即把细菌觅食优化(BFO)算法和遗传算法(GA)中所用的技术结合到混合型 BFO-GA 算法当中。它用细菌群落来全局搜索最优解,并用遗传运算器来优调局部最优值。与原始的 BFO 不同,细菌现在可以突变,并继承基因。
DoEasy. 控件 (第 32 部分): 水平滚动条,鼠标轮滚动
DoEasy. 控件 (第 32 部分): 水平滚动条,鼠标轮滚动

DoEasy. 控件 (第 32 部分): 水平滚动条,鼠标轮滚动

在本文中,我们将完成水平滚动条对象功能的开发。我们还将令移动滚动条滑块和旋转鼠标滚轮来滚动容器的内容成为可能,以及考虑到 MQL5 中的新订单执行策略,和新的运行时错误代码,在函数库里相应添加。
preview
MQL5 中的范畴论 (第 15 部分):函子与图论

MQL5 中的范畴论 (第 15 部分):函子与图论

本文是以 MQL5 实现范畴论,着眼于函子之系列的续篇,但这次是作为图论和集合之间的桥梁。我们重新审视日历数据,尽管它在策略测试器中存在使用局限,但在相关性的帮助下,可利用函子来预测波动性。
preview
神经网络变得轻松(第五十五部分):对比内在控制(CIC)

神经网络变得轻松(第五十五部分):对比内在控制(CIC)

对比训练是一种无监督训练方法表象。它的目标是训练一个模型,突显数据集中的相似性和差异性。在本文中,我们将谈论使用对比训练方式来探索不同的扮演者技能。
preview
重构经典策略(第七部分):基于USDJPY的外汇市场与主权债务分析

重构经典策略(第七部分):基于USDJPY的外汇市场与主权债务分析

在今天的文章中,我们将分析汇率走势与政府债券之间的关系。债券是固定收益证券中最受欢迎的形式之一,将成为我们讨论的重点。加入我们,一起探索是否可以利用人工智能技术改进一种经典策略。
preview
开发多币种 EA 交易系统(第 15 部分):为真实交易准备 EA

开发多币种 EA 交易系统(第 15 部分):为真实交易准备 EA

当我们逐渐接近获得一个现成的 EA 时,我们需要注意在测试交易策略阶段看似次要的问题,但在转向真实交易时变得重要。
preview
DoEasy.控件(第 33 部分):垂直滚动条

DoEasy.控件(第 33 部分):垂直滚动条

在本文中,我们将继续开发 DoEasy 库的图形元素,并添加表单对象控件的垂直滚动功能,以及将来需要的一些实用函数和方法。
preview
人工蜂巢算法(ABHA):测试与结果

人工蜂巢算法(ABHA):测试与结果

在本文中,我们将继续深入探索人工蜂巢算法(ABHA),通过深入研究代码并探讨其余的方法。正如您可能还记得的那样,模型中的每只蜜蜂都被表示为一个独立的智能体,其行为取决于内部和外部信息以及动机状态。我们将在各种函数上测试该算法,并通过在评分表中呈现结果来总结测试效果。
preview
为智能系统制定品质因数

为智能系统制定品质因数

在本文中,我们将见识到如何制定一个品质得分,并由您的智能系统从策略测试器返回。 我们将查看两种著名的计算方法 — Van Tharp 和 Sunny Harris。
preview
软件开发和 MQL5 中的设计范式(第 4 部分):行为范式 2

软件开发和 MQL5 中的设计范式(第 4 部分):行为范式 2

在本文中,我们将终结有关设计范式主题的系列文章,我们提到有三种类型的设计范式:创建型、结构型、和行为型。我们将终结行为类型的其余范式,其可以帮助设置对象之间的交互方法,令我们的代码更整洁。
preview
在MQL5中创建动态多品种、多周期相对强弱指数(RSI)指标仪表盘

在MQL5中创建动态多品种、多周期相对强弱指数(RSI)指标仪表盘

本文中,我们将在MQL5中开发一个动态多品种、多周期相对强弱指数(RSI)指标仪表盘,为交易者提供跨不同品种和时间段的实时RSI值。该仪表盘具备交互式按钮、实时更新功能和有色编码的指标,以帮助交易者做出明智的决策。
preview
MQL5 中的范畴论 (第 16 部分):多层感知器函子

MQL5 中的范畴论 (第 16 部分):多层感知器函子

本文是我们系列文章的第 16 篇,继续考察函子以及如何使用人工神经网络实现它们。我们偏离了迄今为止在该系列中所采用的方式,这涉及预测波动率,并尝试实现自定义信号类来设置入仓和出仓信号。
preview
MQL5 向导技巧须知(第27部分):移动平均线与攻击角度

MQL5 向导技巧须知(第27部分):移动平均线与攻击角度

攻击角度是一个经常被引用的指标,其陡峭程度被认为与当前趋势的强度密切相关。让我们来看一下通常如何使用和理解该指标,并探讨在测量时是否可以做出一些改变,以优化那些将其纳入交易系统的应用效果。
preview
神经网络变得简单(第 85 部分):多变元时间序列预测

神经网络变得简单(第 85 部分):多变元时间序列预测

在本文中,我愿向您介绍一种新的复杂时间序列预测方法,它和谐地结合了线性模型和转换器的优点。
preview
数据科学与机器学习(第24部分):使用常规AI模型进行外汇时间序列预测

数据科学与机器学习(第24部分):使用常规AI模型进行外汇时间序列预测

在外汇市场中,如果不了解过去的情况,就很难预测未来的趋势。很少有机器学习模型能够通过考虑过去的数据来做出未来预测。在本文中,我们将讨论如何使用经典(非时间序列)人工智能模型来战胜市场。
preview
神经网络变得简单(第 73 部分):价格走势预测 AutoBot

神经网络变得简单(第 73 部分):价格走势预测 AutoBot

我们将继续讨论训练轨迹预测模型的算法。在本文中,我们将领略一种称为 “AutoBots” 的方法。
preview
开发回放系统(第31部分):EA交易项目——C_Mouse类(五)

开发回放系统(第31部分):EA交易项目——C_Mouse类(五)

我们需要一个计时器,它可以显示距离回放/模拟运行结束还有多少时间。乍一看,这可能是一个简单快捷的解决方案。许多人只是尝试适应并使用交易服务器使用的相同系统。但有一件事是很多人在考虑这个解决方案时没有考虑的:对于回放,甚至更多的是模拟,时钟的工作方式不同。所有这些都使创建这样一个系统变得复杂。
preview
开发回放系统(第29部分):EA 交易项目——C_Mouse类(三)

开发回放系统(第29部分):EA 交易项目——C_Mouse类(三)

在改进了C_Mouse类之后,我们可以专注于创建一个类,该类旨在为我们的分析创建一个全新的框架。我们不会使用继承或多态性来创建这个新类。相反,我们将改变,或者更好地说,在价格线中添加新的对象。这就是我们在这篇文章中要做的。在下一节中,我们将研究如何更改分析。所有这些都将在不更改C_Mouse类的代码的情况下完成。实际上,使用继承或多态性会更容易实现这一点。然而,还有其他方法可以达到同样的结果。
preview
如何利用 MQL5 创建简单的多币种智能交易系统(第 7 部分):依据动量振荡器指标的之字折线

如何利用 MQL5 创建简单的多币种智能交易系统(第 7 部分):依据动量振荡器指标的之字折线

本文中的多货币智能系统是利用之字折线(ZigZag)指标的自动交易系统,该指标依据动量振荡器过滤、或彼此过滤信号。
preview
开发回放系统 — 市场模拟(第 26 部分):智能交易系统项目 — C_Terminal 类

开发回放系统 — 市场模拟(第 26 部分):智能交易系统项目 — C_Terminal 类

现在,我们可以开始创建回放/模拟系统的智能系统。不过,我们需要改进一些东西,并非敷衍了事。尽管如此,我们不应被最初的复杂性所吓倒。重要的是从某处开始,否则我们最终只会空想一项任务的难度,甚至没有尝试去克服它。这就是编程的全部意义:通过学习、测试和广泛的研究来攻克障碍。
preview
交易中的神经网络:时空神经网络(STNN)

交易中的神经网络:时空神经网络(STNN)

在本文中,我们将谈及使用时空变换来有效预测即将到来的价格走势。为了提高 STNN 中的数值预测准确性,提出了一种连续注意力机制,令模型能够更好地参考数据的重要方面。
preview
从基础到中级:变量(I)

从基础到中级:变量(I)

许多初学者很难理解为什么他们的代码没有按他们预期的方式运行。让代码真正发挥作用的因素有很多。代码能够正常运行,不仅仅是因为它包含了一系列不同的函数和操作。今天,我邀请您学习如何正确地编写真正的代码,而不是简单地复制粘贴代码段。这里呈现的材料仅供教学目的。在任何情况下,这些应用不应该被用于学习和掌握所介绍概念之外的其他目的。
preview
为 MetaTrader 5 开发MQTT客户端:TDD方法——第3部分

为 MetaTrader 5 开发MQTT客户端:TDD方法——第3部分

本文是一系列文章的第三部分,介绍了我们为MQTT协议开发本机MQL5客户端的步骤。在这一部分中,我们详细描述了如何使用测试驱动开发来实现CONNECT/CONNACK数据包交换的操作行为部分。在这一步骤结束时,我们的客户端必须能够在处理连接尝试可能产生的任何服务器结果时表现得正常。
preview
创建 MQL5-Telegram 集成 EA 交易(第 5 部分):从 Telegram 向 MQL5 发送命令并接收实时响应

创建 MQL5-Telegram 集成 EA 交易(第 5 部分):从 Telegram 向 MQL5 发送命令并接收实时响应

在本文中,我们创建了几个类来促进 MQL5 和 Telegram 之间的实时通信。我们专注于从 Telegram 获取命令,解码和解释它们,并发送适当的响应。最后,我们确保这些交互在交易环境中得到有效测试和运行。
preview
开发回放系统 — 市场模拟(第 28 部分):智能交易系统项目 — C_Mouse 类 (II)

开发回放系统 — 市场模拟(第 28 部分):智能交易系统项目 — C_Mouse 类 (II)

当人们开始创建第一个拥有计算能力的系统时,一切都需要工程师的参与,他们必须非常熟知该项目。我们谈论的是计算机技术的曙光,那个时代甚至没有用于编程的终端。随着它的发展,越来越多的人对能够创造一些东西感兴趣,涌现出新的思路和编程方式,取代了旧式风格的改变连接器位置。这就是第一个终端出现的时刻。
preview
在任何市场中获得优势(第四部分):CBOE欧元和黄金波动率指数

在任何市场中获得优势(第四部分):CBOE欧元和黄金波动率指数

我们将分析芝加哥期权交易所(CBOE)整理的替代数据,以提高我们的深度神经网络在预测XAUEUR货币对时的准确性。
preview
您应当知道的 MQL5 向导技术(第 39 部分):相对强度指数

您应当知道的 MQL5 向导技术(第 39 部分):相对强度指数

RSI 是一款流行的动量震荡指标,衡量证券近期价格变化的速度和规模,从而评估证券价格中被高估和低估的情况。这些对速度和幅度的洞察是定义反转点的关键。我们将这个振荡器放入另一个自定义信号类中工作,并验证其信号的一些特征。不过,我们先从总结我们之前在布林带的内容开始。
preview
在MQL5中创建交易管理员面板(第三部分):扩展内置类以进行主题管理(II)

在MQL5中创建交易管理员面板(第三部分):扩展内置类以进行主题管理(II)

在本文的讨论中,我们将逐步扩展现有的对话框库,以纳入主题管理逻辑。此外,我们将把主题切换方法整合到管理员面板项目中使用的 CDialog、CEdit 和 CButton 类中。继续阅读,获取更多深入的了解。
preview
开发多币种 EA 交易(第 6 部分):自动选择实例组

开发多币种 EA 交易(第 6 部分):自动选择实例组

在优化交易策略后,我们会收到一组参数。我们可以使用它们在一个 EA 中创建多个交易策略实例。以前,我们都是手动操作。在此,我们将尝试自动完成这一过程。
preview
创建 MQL5-Telegram 集成 EA 交易 (第一部分):从 MQL5 发送消息到 Telegram

创建 MQL5-Telegram 集成 EA 交易 (第一部分):从 MQL5 发送消息到 Telegram

在本文中,我们在 MQL5 中创建一个 EA 交易,以使用机器人向 Telegram 发送消息。我们设置必要的参数,包括机器人的 API 令牌和聊天 ID,然后通过执行 HTTP POST 请求来传递消息。之后,我们将处理响应以确保成功传达,并排除故障时出现的任何问题。这确保我们能够通过创建的机器人将消息从 MQL5 发送到 Telegram。
preview
交易中的神经网络:用于时间序列预测的轻量级模型

交易中的神经网络:用于时间序列预测的轻量级模型

轻量级时间序列预测模型使用最少的参数数量实现高性能。这反过来减少了计算资源的消耗并加快了决策速度。尽管是轻量级的,这些模型实现了与更复杂模型相当的预测质量。
preview
在MQL5中创建交易管理员面板(第四部分):登录安全层

在MQL5中创建交易管理员面板(第四部分):登录安全层

想象一下,一个恶意入侵者潜入了交易管理员房间,获取了用于向全球数百万交易者传递有价值信息的计算机和管理员面板的访问权限。这种入侵可能导致灾难性后果,例如未经授权发送误导性信息或随意点击按钮触发意外操作。在本次讨论中,我们将探究MQL5中的安全措施以及在管理员面板中实施的新安全功能,以防范这些威胁。通过增强安全协议,我们旨在保护通信渠道并维护全球交易社区的可信度。在本文的讨论中了解更多见解。
preview
您应当知道的 MQL5 向导技术(第 16 部分):配合本征向量进行主成分分析

您应当知道的 MQL5 向导技术(第 16 部分):配合本征向量进行主成分分析

本文所见的主成分分析,是数据分析中的一种降维技术,文中还有如何配合本征值和向量来实现它。一如既往,我们瞄向的是开发一个可在 MQL5 向导中使用的原型专业信号类。
preview
神经网络变得简单(第 57 部分):随机边际扮演者-评论者(SMAC)

神经网络变得简单(第 57 部分):随机边际扮演者-评论者(SMAC)

在此,我将研究相当新颖的随机边际扮演者-评论者(SMAC)算法,该算法允许在熵值最大化的框架内构建潜在变量政策。