MQL5中的范畴论(第21部分):使用LDA的自然变换
这篇文章是我们系列的第21篇,继续研究自然变换以及如何使用线性判别分析(linear discriminant analysis,LDA)来实现它们。我们以信号类格式展示了它的应用程序,就像在前一篇文章中一样。
血液遗传优化算法(BIO)
我向大家介绍我的新种群优化算法——血液遗传优化算法(Blood Inheritance Optimization,BIO),该算法的灵感源自人类血型遗传系统。在该算法中,每个解都有其自身的“血型”,这一血型决定了其进化方式。正如自然界中,孩子的血型是依据特定规则遗传而来,在BIO算法中,新解通过一套遗传与变异机制来获取自身特性。
DoEasy. 控件 (第 18 部分): TabControl 中滚动选项卡的功能
在本文中,我将在 TabControl WinForms 对象中放置滚动标题控件的按钮,以防标题栏不适配控件的尺寸。 此外,我还将实现单击裁剪过的选项卡标题时,标题栏的平移。
在 MQL5 中构建自优化智能交易系统(第六部分):防止爆仓
在今天的讨论中,我们将一同寻找一种算法程序,以最大限度地减少我们因盈利交易被止损而平仓的总次数。我们面临的问题极具挑战性,社区讨论中给出的大多数解决方案都缺乏既定且固定的规则。我们解决问题的算法方法提高了我们交易的盈利能力,并降低了我们的平均每笔交易亏损。然而,要完全过滤掉所有将被止损的交易,还需要进一步的改进,但我们的解决方案对任何人来说都是一个很好的初步尝试
如何利用 MQL5 创建简单的多币种智能交易系统(第 7 部分):依据动量振荡器指标的之字折线
本文中的多货币智能系统是利用之字折线(ZigZag)指标的自动交易系统,该指标依据动量振荡器过滤、或彼此过滤信号。
使用Python和MQL5进行多交易品种分析(第一部分):纳斯达克集成电路制造商
加入我们的讨论,了解如何利用人工智能(AI)优化您的仓位规模和订单数量,以最大化您的投资组合回报。我们将展示如何通过算法识别一个最优的投资组合,并根据您的回报预期或风险承受能力来调整投资组合。在本次讨论中,我们将使用SciPy库和MQL5语言,利用所拥有的全部数据创建一个最优且多样化的投资组合。
交易中的神经网络:用于时间序列预测的轻量级模型
轻量级时间序列预测模型使用最少的参数数量实现高性能。这反过来减少了计算资源的消耗并加快了决策速度。尽管是轻量级的,这些模型实现了与更复杂模型相当的预测质量。
神经网络变得简单(第 59 部分):控制二分法(DoC)
在上一篇文章中,我们领略了决策变换器。但是,外汇市场复杂的随机环境不允许我们充分发挥所提议方法的潜能。在本文中,我将讲述一种算法,旨在提高在随机环境中的性能。
改编版 MQL5 网格对冲 EA(第 IV 部分):优化简单网格策略(I)
在第四篇中,我们重新审视了之前开发的“简单对冲”和“简单网格”智能系统(EA)。我们的专注点转移到通过数学分析和暴力方式完善简单网格 EA,旨在优化策略用法。本文深入策略的数学优化,为在以后文章中探索未来基于编码的优化奠定了基础。
基于交易量的神经网络分析:未来趋势的关键
本文探讨了通过将技术分析原理与 LSTM 神经网络架构相结合,基于交易量分析来改进价格预测准确性的可能性。文章特别关注异常交易量的检测与解读、聚类方法的使用,以及基于交易量的特征创建及其在机器学习背景下的定义。
软件开发和 MQL5 中的设计范式(第一部分):创建范式
有一些方法可以用来解决许多重复性的问题。一旦明白如何运用这些方法,就可助您有效地创建软件,并贯彻 DRY(不要重复自己)的概念。在这种境况下,设计范式的主题就非常好用,因为它们为恰当描述过,且重复的问题提供了解决方案。
软件开发和 MQL5 中的设计范式(第 3 部分):行为范式 1
来自设计范式文献的一篇新文章,我们将看到类型其一,即行为范式,从而理解我们如何有效地在所创建对象之间构建通信方法。通过完成这些行为范式,我们就能够理解创建和构建可重用、可扩展、经过测试的软件。
MQL5 简介(第 11 部分):MQL5 中使用内置指标的初学者指南(二)
了解如何使用 RSI、MA 和随机震荡指标等多种指标在 MQL5 中开发 EA 交易来检测隐藏的看涨和看跌背离。学习实施有效的风险管理并通过详细的示例和完整注释的源代码实现交易自动化,以达到教育目的!
MQL5 中的范畴论 (第 13 部分):数据库制程的日历事件
本文在 MQL5 中遵循范畴论实现秩序,研究如何在 MQL5 中结合数据库制程进行分类。我们介绍了当辨别交易相关的文本(字符串)信息时,如何把数据库制程概念与范畴论相结合。日历事件是焦点。
开发多币种 EA 交易(第 19 部分):创建用 Python 实现的阶段
到目前为止,我们已经探讨了仅在标准策略测试器中启动顺序程序以优化 EA 的自动化。但是,如果我们想在两次启动之间使用其他方法对获得的数据进行一些处理呢?我们将尝试添加创建由用 Python 编写的程序执行的新优化阶段的功能。
价格行为分析工具包开发(第八部分):指标看板
作为价格行为分析领域最强大的工具之一,指标看板(Metrics Board)旨在通过一键操作简化市场分析流程,实时提供关键市场指标数据。每个功能按钮均对应特定的功能,无论是分析高/低趋势、交易量还是其他关键指标。该工具能在您最需要的时候提供精准、实时的数据。让我们通过本文更深入地了解它的功能。
MQL5 中的交易策略自动化(第十五部分):可视化价格行为的谐波形态模式
本文探讨了在 MQL5 中实现谐波形态的自动化,详细介绍了如何在 MetaTrader 5 图表上对其进行检测和可视化。我们将实现一个EA,用于识别摆动点,验证基于斐波那契比率的形态,并通过清晰的图形标注执行交易。文章最后还提供了关于回测和优化程序的指导,以助力有效的交易。
基于转移熵的时间序列因果分析
在本文中,我们讨论了如何将统计因果关系应用于识别预测变量。我们将探讨因果关系与传递熵(Transfer Entropy, TE)之间的联系,并展示用于检测两个变量之间信息方向性传递的MQL5代码。
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(二)-LoRA-调优
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
神经网络变得简单(第 76 部分):配合多未来变换器探索不同的交互形态
本文继续探讨预测即将到来的价格走势的主题。我邀请您领略多未来变换器架构。其主要思路是把未来的多模态分布分解为若干个单模态分布,这样就可以有效地模拟场景中个体之间互动的各种模态。
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(四) —— 测试交易策略
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
使用Python和MQL5进行多品种分析(第三部分):三角汇率
交易者常常因虚假信号而面临资金回撤,而等待确认信号又可能导致错失交易机会。本文介绍了一种三角交易策略,该策略利用白银兑美元(XAGUSD)和白银兑欧元(XAGEUR)的价格,以及欧元兑美元(EURUSD)的汇率,来过滤市场噪音。通过利用跨市场关系,交易者可以揭示隐藏的市场情绪,并实时优化交易入场点。
在任何市场中获得优势(第五部分):联邦储备经济数据库(FRED)欧元兑美元( EURUSD)可替代数据
在今天的讨论中,我们使用了圣路易斯联邦储备银行(St. Louis Federal Reserve)提供的关于广义美元指数以及其他一系列宏观经济指标的可替代日数据,来预测欧元兑美元(EURUSD)未来的汇率。遗憾的是,尽管数据似乎具有近乎完美的相关性,但我们在模型准确性方面未能实现任何实质性提升,这可能暗示投资者最好采用常规的市场价格数据。
创建 MQL5-Telegram 集成 EA 交易 (第一部分):从 MQL5 发送消息到 Telegram
在本文中,我们在 MQL5 中创建一个 EA 交易,以使用机器人向 Telegram 发送消息。我们设置必要的参数,包括机器人的 API 令牌和聊天 ID,然后通过执行 HTTP POST 请求来传递消息。之后,我们将处理响应以确保成功传达,并排除故障时出现的任何问题。这确保我们能够通过创建的机器人将消息从 MQL5 发送到 Telegram。
价格行为分析工具包开发(第10部分):外部资金流(二)VWAP
通过我们的综合指南,掌握VWAP的强大力量!学习如何使用MQL5和Python将VWAP分析集成到您的交易策略中。最大化您的市场洞察力,并改善您今天的交易决策。
价格行为分析工具包开发(第六部分):均值回归信号捕捉器
有些概念乍一看似乎简单明了,但在实际操作中的实现却颇具挑战。在接下来的文章中,将带您了解我们创新性地自动化一款运用均值回归策略分析市场的智能交易系统(EA)的方法。与我们一同揭开这一激动人心的自动化过程的神秘面纱吧。
开发回放系统 — 市场模拟(第 20 部分):外汇(I)
本文的最初目标不是涵盖外汇交易的所有可能性,而更是出于适配系统,如此您就至少可以执行一次市场回放。我们把模拟留待其它时刻。不过,如果我们没有跳价而仅有柱线的话,稍加努力,我们就可以模拟外汇市场中可能发生的交易。直到我们研究如何适配模拟器之前,情况一直如此。不经修改就尝试在系统内处理外汇数据会导致一系列错误。
交易中的神经网络:将全局信息注入独立通道(InjectTST)
大多数现代多模态时间序列预测方法都采用了独立通道方式。这忽略了同一时间序列不同通道的天然依赖性。巧妙地运用两种方式(独立通道和混合通道),是提高模型性能的关键。
神经网络变得简单(第 56 部分):利用核范数推动研究
强化学习中的环境研究是一个紧迫的问题。我们之前已视察过一些方式。在本文中,我们将讲述另一种基于最大化核范数的方法。它允许智能体识别拥有高度新颖性和多样性的环境状态。
克服集成ONNX(Open Neural Network Exchange )的挑战
ONNX是集成不同平台间复杂AI代码的强大工具,尽管它非常出色,但要想充分发挥其作用,就必须解决一些伴随而来的挑战。在本文中,我们将讨论您可能会遇到的一些常见问题,以及如何处理这些问题。
从基础到中级:变量(I)
许多初学者很难理解为什么他们的代码没有按他们预期的方式运行。让代码真正发挥作用的因素有很多。代码能够正常运行,不仅仅是因为它包含了一系列不同的函数和操作。今天,我邀请您学习如何正确地编写真正的代码,而不是简单地复制粘贴代码段。这里呈现的材料仅供教学目的。在任何情况下,这些应用不应该被用于学习和掌握所介绍概念之外的其他目的。
基于LSTM的趋势预测在趋势跟踪策略中的应用
长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),其设计初衷是通过有效捕捉数据中的长期依赖关系,并解决传统RNN存在的梯度消失问题,从而实现对时序数据的高效建模。本文将系统阐述如何利用LSTM进行未来趋势预测,进而提升趋势跟踪策略的实战表现。具体内容涵盖这些模块:LSTM关键概念介绍与发展契机、从MetaTrader 5平台提取数据、在Python中构建并训练模型、将机器学习模型嵌入MQL5中、基于统计回测的结果分析与改进方向。
MQL5中的范畴论(第18部分):自然性四边形
本文通过介绍自然变换这一主题中的一个关键支柱,继续我们的范畴理论系列。我们研究看似复杂的定义,然后深入研究本系列“面包和黄油”的示例和应用程序;波动性预测。
数据科学和机器学习(第 30 部分):预测股票市场的幂对、卷积神经网络(CNN)、和递归神经网络(RNN)
在本文中,我们会探讨卷积神经网络(CNN)和递归神经网络(RNN)在股票市场预测中的动态集成。借力 CNN 提取形态的能力,以及 RNN 的精练度,来处理序列数据。我们看看这个强大的组合如何强化交易算法的准确性和效率。
价格行为分析工具包开发(第五部分):波动率导航智能交易系统(Volatility Navigator EA)
判断市场方向或许相对简单,但把握入场时机却颇具挑战。作为“价格行为分析工具包开发”系列文章的一部分,我很高兴再为大家介绍一款能够提供入场点、止盈水平和止损设置位置的工具。为实现这一目标,我们采用了MQL5编程语言。让我们在本文中深入探讨每一步。
开发回放系统 — 市场模拟(第 17 部分):跳价和更多跳价(I)
于此,我们将见识到如何实现一些非常有趣的东西,但同时也会因某些可能十分令人困惑的关键点而极其困难。可能发生的最糟糕的事情是,一些自诩专业人士的交易者却对这些概念在资本市场中的重要性一无所知。好吧,尽管我们在这里专注于编程,但理解市场交易中涉及的一些问题,对于我们将要实现的内容至关重要。
种群优化算法:细菌觅食优化 — 遗传算法(BFO-GA)
本文释义了一种解决优化问题的新方式,即把细菌觅食优化(BFO)算法和遗传算法(GA)中所用的技术结合到混合型 BFO-GA 算法当中。它用细菌群落来全局搜索最优解,并用遗传运算器来优调局部最优值。与原始的 BFO 不同,细菌现在可以突变,并继承基因。