MQL4和MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
您应当知道的 MQL5 向导技术(第 26 部分):移动平均和赫斯特(Hurst)指数

您应当知道的 MQL5 向导技术(第 26 部分):移动平均和赫斯特(Hurst)指数

赫斯特(Hurst)指数是时间序列长期自相关度的衡量度。据了解,它捕获时间序列的长期属性,故在时间序列分析中也具有一定的分量,即使在财经/金融时间序列之外亦然。然而,我们专注于其对交易者的潜在益处,研究如何将该计量度与移动平均线配对,从而构建潜在的稳健信号。
preview
群体优化算法:抵抗陷入局部极值(第一部分)

群体优化算法:抵抗陷入局部极值(第一部分)

本文介绍了一个独特的实验,旨在研究群体优化算法在群体多样性较低时有效逃脱局部最小值并达到全局最大值的能力。朝着这个方向努力将进一步了解哪些特定算法可以使用用户设置的坐标作为起点成功地继续搜索,以及哪些因素会影响它们的成功。
preview
开发多币种 EA 交易 (第 10 部分):从字符串创建对象

开发多币种 EA 交易 (第 10 部分):从字符串创建对象

EA 开发计划包括几个阶段,中间结果保存在数据库中,它们只能作为字符串或数字而不是对象再次从那里读取。因此,我们需要一种方法来根据从数据库读取的字符串重新创建 EA 中的所需对象。
preview
基于转移熵的时间序列因果分析

基于转移熵的时间序列因果分析

在本文中,我们讨论了如何将统计因果关系应用于识别预测变量。我们将探讨因果关系与传递熵(Transfer Entropy, TE)之间的联系,并展示用于检测两个变量之间信息方向性传递的MQL5代码。
preview
从基础到中级:BREAK 和 CONTINUE 语句

从基础到中级:BREAK 和 CONTINUE 语句

在本文中,我们将学习如何在循环中使用 RETURN、BREAK 和 CONTINUE 语句。了解每个语句在循环执行流程中的作用对于处理更复杂的应用程序非常重要。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
精通模型解释:从您的机器学习模型中获取深入见解

精通模型解释:从您的机器学习模型中获取深入见解

机器学习对于任何经验的人来说都是一个复杂而回报的领域。在本文中,我们将深入探讨为您所构建模型提供动力的内在机制,我们探索的错综复杂的世界,涵盖特征、预测和化解复杂性的有力决策,并牢牢把握模型解释。学习驾驭权衡、强化预测、特征重要性排位的艺术,同时确保做出稳健的决策。这篇基本读物可帮助您从机器学习模型中获得更高的性能,并为运用机器学习方法提取更多价值。
preview
神经网络变得简单(第 94 部分):优化输入序列

神经网络变得简单(第 94 部分):优化输入序列

在处理时间序列时,我们始终按其历史序列使用源数据。但这是最好的选项吗?有一种观点认为,改变输入数据顺序将提高训练模型的效率。在本文中,我邀请您领略其中一种优化输入序列的方法。
preview
开发基于订单簿的交易系统(第一部分):指标

开发基于订单簿的交易系统(第一部分):指标

市场深度无疑是执行快速交易的一个非常重要的因素,特别是在高频交易(HFT)算法中。在本系列文章中,我们将探讨这种类型的交易事件,这些事件可以通过经纪商在许多可交易的交易品种上获得。我们将从一个指标开始,您可以在其中自定义直接显示在图表上的直方图的调色板、位置和大小。我们还将研究如何生成 BookEvent 事件,以在特定条件下测试指标。未来文章的其他可能主题包括如何存储价格分布数据以及如何在策略测试器中使用它。
preview
MQL5 中的范畴论 (第 9 部分):幺半群(Monoid)— 动作

MQL5 中的范畴论 (第 9 部分):幺半群(Monoid)— 动作

本文是以 MQL5 实现范畴论系列的延续。 在这里,我们继续将“幺半群 — 动作”当为幺半群变换的一种手段,如上一篇文章所涵盖的内容,从而增加了应用。
preview
可视化交易图表(第二部分):数据图形化展示

可视化交易图表(第二部分):数据图形化展示

接下来,我们将从头开始编写一个脚本,以简化交易订单截图的加载过程,便于分析交易入场点。所有关于单个交易的必要信息都将方便地显示在一个图表上,并且该图表具备绘制不同时间框架的能力。
preview
为 MetaTrader 5 开发 MQTT 客户端:TDD 方法 - 最终篇

为 MetaTrader 5 开发 MQTT 客户端:TDD 方法 - 最终篇

本文是介绍我们针对 MQTT 5.0 协议的本机 MQL5 客户端的开发步骤系列文章的最后一部分。尽管该库尚未投入实际使用,但在此部分中,我们将使用我们的客户端来更新来自另一个经纪商的报价(或利率)的自定义交易品种。请参阅本文底部以获取有关该库的当前状态的更多信息、它与 MQTT 5.0 协议完全兼容所缺少的内容、可能的路线图以及如何关注和促进其发展。
preview
化学反应优化(CRO)算法(第一部分):在优化中处理化学

化学反应优化(CRO)算法(第一部分):在优化中处理化学

在本文的第一部分中,我们将深入化学反应的世界并发现一种新的优化方法!化学反应优化 (CRO,Chemical reaction optimization) 利用热力学定律得出的原理来实现有效的结果。我们将揭示分解、合成和其他化学过程的秘密,这些秘密成为了这种创新方法的基础。
preview
重构MQL5中的经典策略(第三部分):富时100指数预测

重构MQL5中的经典策略(第三部分):富时100指数预测

在本系列文章中,我们将重新审视一些知名的交易策略,以探究是否可以利用AI来改进这些策略。在今天的文章中,我们将研究富时100指数,并尝试使用构成该指数的部分个股来预测该指数。
preview
掌握 MQL5:从入门到精通(第四部分):关于数组、函数和全局终端变量

掌握 MQL5:从入门到精通(第四部分):关于数组、函数和全局终端变量

本文是初学者系列文章的延续。它详细介绍了数据数组、数据和函数的交互,以及允许不同 MQL5 程序之间交换数据的全局终端变量。
preview
开发回放系统(第 39 部分):铺平道路(三)

开发回放系统(第 39 部分):铺平道路(三)

在进入开发的第二阶段之前,我们需要修正一些想法。您知道如何让 MQL5 满足您的需求吗?您是否尝试过超出文档所包含的范围?如果没有,那就做好准备吧。因为我们将做一些大多数人通常不会做的事情。
preview
为 Metatrader 5 开发MQTT客户端:TDD方法——第4部分

为 Metatrader 5 开发MQTT客户端:TDD方法——第4部分

本文是一系列文章的第四部分,介绍了我们为 MQTT 协议开发本机 MQL5 客户端的步骤。在这一部分中,我们将描述什么是 MQTT v5.0 属性,它们的语义,以及我们如何阅读其中的一些属性,并提供一个如何使用属性来扩展协议的简短示例。
preview
两样本Kolmogorov-Smirnov检验作为时间序列非平稳性的指标

两样本Kolmogorov-Smirnov检验作为时间序列非平稳性的指标

本文探讨了最著名的非参数同质性检验之一——两样本柯尔莫哥洛夫-斯米尔诺夫(Kolmogorov-Smirnov)检验。文章对模型数据和实际价格都进行了分析。此外,本文还给出了构建非平稳性指标(iSmirnovDistance)的一个示例。
preview
在任何市场中获得优势(第五部分):联邦储备经济数据库(FRED)欧元兑美元( EURUSD)可替代数据

在任何市场中获得优势(第五部分):联邦储备经济数据库(FRED)欧元兑美元( EURUSD)可替代数据

在今天的讨论中,我们使用了圣路易斯联邦储备银行(St. Louis Federal Reserve)提供的关于广义美元指数以及其他一系列宏观经济指标的可替代日数据,来预测欧元兑美元(EURUSD)未来的汇率。遗憾的是,尽管数据似乎具有近乎完美的相关性,但我们在模型准确性方面未能实现任何实质性提升,这可能暗示投资者最好采用常规的市场价格数据。
preview
禁忌搜索(TS)

禁忌搜索(TS)

本文讨论了禁忌搜索(Tabu Search)算法,这是一种最早且最为人所知的元启发式方法之一。我们将详细探讨该算法的运行过程,从选择初始解并探索邻近选项开始,重点介绍使用禁忌表。文章涵盖了该算法的关键方面及其特性。
preview
为 Metatrader 5 开发 MQTT 客户端:TDD 方法 - 第 6 部分

为 Metatrader 5 开发 MQTT 客户端:TDD 方法 - 第 6 部分

本文是介绍我们针对 MQTT 5.0 协议的本地 MQL5 客户端的开发步骤的系列文章的第六部分。在本部分中,我们会讨论我们第一次重构中的主要变化,我们如何为我们的数据包构建类得出可行的蓝图,我们如何构建 PUBLISH 和 PUBACK 数据包,以及 PUBACK 原因代码背后的语义。
preview
开发回放系统(第 35 部分):进行调整 (一)

开发回放系统(第 35 部分):进行调整 (一)

在向前迈进之前,我们需要解决几个问题。这些实际上并不是必需的修正,而是对类的管理和使用方式的改进。原因是系统内的某些相互作用导致了故障的发生。尽管我们试图找出这些故障的原因以消除它们,但所有这些尝试都没有成功。其中有些情况完全不合理,例如,当我们在 C/C++ 中使用指针或递归时,程序就会崩溃。
preview
DoEasy.服务功能(第 2 部分):孕线形态

DoEasy.服务功能(第 2 部分):孕线形态

本文将继续探讨 DoEasy 库中的价格形态。我们还将创建价格行为形态中的 "孕线"(Inside Bar)形态类。
preview
您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM

您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM

限制性玻尔兹曼(Boltzmann)机处于基本等级,是一个两层神经网络,擅长通过降维进行无监督分类。我们取其基本原理,并检验如果我们重新设计和训练它,我们是否可以得到一个实用的信号滤波器。
preview
利用Python进行季节性过滤并为EA的ONNX深度学习模型选择时间周期

利用Python进行季节性过滤并为EA的ONNX深度学习模型选择时间周期

在利用Python构建深度学习模型时,我们能否从季节性因素中获益?为ONNX模型过滤数据是否有助于获得更好的结果?我们应该使用哪个时间周期?本文将全面探讨这些问题。
preview
您应当知道的 MQL5 向导技术(第 22 部分):条件化生成式对抗网络(cGAN)

您应当知道的 MQL5 向导技术(第 22 部分):条件化生成式对抗网络(cGAN)

生成式对抗网络是一对神经网络,它们彼此相互训练,以便结果更精准。我们采用这些网络的条件化类型,作为我们正在寻找的可选项,应用于智能信号类之内预测金融时间序列。
preview
开发多币种 EA 交易(第 18 部分):考虑远期的自动化组选择

开发多币种 EA 交易(第 18 部分):考虑远期的自动化组选择

让我们继续将之前手动执行的步骤自动化。这一次,我们将回到第二阶段的自动化,即选择交易策略的最佳单实例组,并补充考虑远期实例结果的能力。
preview
DoEasy. 控件 (第 17 部分): 裁剪对象不可见部分、辅助箭头按钮 WinForms 对象

DoEasy. 控件 (第 17 部分): 裁剪对象不可见部分、辅助箭头按钮 WinForms 对象

在本文中,我将创建一种功能,可隐藏超出其容器之外的对象部分。 此外,我亦将创建辅助箭头按钮对象,作为其它 WinForms 对象的一部分。
preview
开发多币种 EA 交易 (第 5 部分):可变仓位大小

开发多币种 EA 交易 (第 5 部分):可变仓位大小

在前面的部分中,我们正在开发的智能交易系统 (EA) 只能使用固定的仓位大小进行交易。这对于测试来说是可以接受的,但在真实账户交易时并不建议这样做。让我们能够使用可变的仓位大小进行交易。
preview
神经网络变得简单(第 93 部分):频域和时域中的自适应预测(终篇)

神经网络变得简单(第 93 部分):频域和时域中的自适应预测(终篇)

在本文中,我们继续实现 ATFNet 模型的方式,其在时间序列预测内可自适应地结合 2 个模块(频域和时域)的结果。
preview
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 2 部分):用于与井字游戏 RestAPI 进行 HTTP 交互的 MQL5 函数

开发具有 RestAPI 集成的 MQL5 强化学习代理(第 2 部分):用于与井字游戏 RestAPI 进行 HTTP 交互的 MQL5 函数

在本文中,我们将讨论 MQL5 如何与 Python 和 FastAPI 交互,使用 MQL5 中的 HTTP 调用与 Python 开发的井字游戏交互。这篇文章讨论了使用 FastAPI 为这种集成创建一个 API,并提供了一个 MQL5 测试脚本,突出了 MQL5 的多功能性、Python 的简易性以及 FastAPI 在连接不同技术以创建创新解决方案方面的效果。
preview
神经网络实践:伪逆 (二)

神经网络实践:伪逆 (二)

由于这些文章本质上是教育性的,并不打算展示特定功能的实现,因此我们在本文中将做一些不同的事情。我们将重点介绍伪逆的因式分解,而不是展示如何应用因式分解来获得矩阵的逆。原因是,如果我们能以一种特殊的方式来获得一般系数,那么展示如何获得一般系数就没有意义了。更好的是,读者可以更深入地理解为什么事情会以这种方式发生。那么,现在让我们来弄清楚为什么随着时间的推移,硬件正在取代软件。
preview
您应当知道的 MQL5 向导技术(第 08 部分):感知器

您应当知道的 MQL5 向导技术(第 08 部分):感知器

感知器,单隐藏层网络,对于任何精熟基本自动交易,并希望涉足神经网络的人来说都是一个很好的切入点。我们查看这是如何在一个信号类当中一步一步组装实现的,其是 MQL5 向导类中用于智能交易系统的部分。
preview
数据科学和机器学习(第 19 部分):利用 AdaBoost 为您的 AI 模型增压

数据科学和机器学习(第 19 部分):利用 AdaBoost 为您的 AI 模型增压

AdaBoost,一个强力的提升算法,设计用于提升 AI 模型的性能。AdaBoost 是 Adaptive Boosting 的缩写,是一种复杂的融合学习技术,可无缝集成较弱的学习器,增强它们的集体预测强度。
preview
开发多币种 EA 交易(第 12 部分):开发自营交易级别风险管理器

开发多币种 EA 交易(第 12 部分):开发自营交易级别风险管理器

在正在开发的 EA 中,我们已经有了某种控制回撤的机制。但它具有概率性,因为它是以历史价格数据的测试结果为基础的。因此,回撤有时会超过最大预期值(尽管概率很小)。让我们试着增加一种机制,以确保遵守指定的回撤水平。
preview
《数据科学与机器学习(第25部分):使用循环神经网络(RNN)进行外汇时间序列预测》

《数据科学与机器学习(第25部分):使用循环神经网络(RNN)进行外汇时间序列预测》

循环神经网络(RNN)非常擅长利用过去的信息来预测未来的事件。它们卓越的预测能力已经在各个领域得到了广泛应用,并取得了巨大成功。在本文中,我们将部署RNN模型来预测外汇市场的趋势,展示它们在提高外汇交易预测准确性方面的潜力。
preview
在 MQL5 中创建每日回撤限制器 EA

在 MQL5 中创建每日回撤限制器 EA

本文从详细的角度讨论了如何基于交易算法实现 EA 交易系统的创建。这有助于在 MQL5 中实现系统自动化,并控制每日回撤。
preview
大气云模型优化(ACMO):理论

大气云模型优化(ACMO):理论

本文致力于介绍一种元启发式算法——大气云模型优化(ACMO)算法,该算法通过模拟云层的行为来解决优化问题。该算法利用云层的生成、移动和传播的原理,适应解空间中的“天气条件”。本文揭示了该算法如何通过气象模拟在复杂的可能性空间中找到最优解,并详细描述了ACMO运行的各个阶段,包括“天空”准备、云层的生成、云层的移动以及水的集中。
preview
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 3 部分):在 MQL5 中创建自动移动和测试脚本

开发具有 RestAPI 集成的 MQL5 强化学习代理(第 3 部分):在 MQL5 中创建自动移动和测试脚本

本文讨论在 Python 中实现井字游戏中的自动移动,并与 MQL5 函数和单元测试集成。目标是通过在 MQL5 中进行测试,提高游戏的互动性并确保系统的可靠性。本文内容包括游戏逻辑开发、集成和实际测试,最后将介绍动态游戏环境和强大集成系统的创建。
preview
神经网络变得简单(第 77 部分):交叉协方差变换器(XCiT)

神经网络变得简单(第 77 部分):交叉协方差变换器(XCiT)

在我们的模型中,我们经常使用各种关注度算法。而且,可能我们最常使用变换器。它们的主要缺点是资源需求。在本文中,我们将研究一种新算法,它可以帮助降低计算成本,而不会降低品质。
preview
MQL5 中的范畴论 (第 14 部分):线性序函子

MQL5 中的范畴论 (第 14 部分):线性序函子

本文是更广泛关于以 MQL5 实现范畴论系列的一部分,深入探讨了函子(Functors)。我们实验了如何将线性序映射到集合,这要归功于函子;通过研究两组数据,典型情况下会忽略其间的任何联系。