MQL4和MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
神经网络变得简单(第 58 部分):决策转换器(DT)

神经网络变得简单(第 58 部分):决策转换器(DT)

我们继续探索强化学习方法。在本文中,我将专注于一种略有不同的算法,其参考智能体政策构造一连串动作的范式。
preview
开发回放系统 — 市场模拟(第 09 部分):自定义事件

开发回放系统 — 市场模拟(第 09 部分):自定义事件

在此,我们将见到自定义事件是如何被触发的,以及指标如何报告回放/模拟服务的状态。
preview
群体优化算法:螺旋动态优化 (SDO) 算法

群体优化算法:螺旋动态优化 (SDO) 算法

文章介绍了一种基于自然界螺旋轨迹构造模式(如软体动物贝壳)的优化算法 - 螺旋动力学优化算法(Spiral Dynamics Optimization,SDO)。我对作者提出的算法进行了彻底的修改和完善,本文将探讨这些修改的必要性。
preview
频域中的滤波和特征提取

频域中的滤波和特征提取

在本文中,我们探索了在时间序列由数字滤波器在频域上进行表达的应用,如此即可提取也许对预测模型有用的独特特征。
preview
矩阵实用工具,扩展矩阵和向量的标准库功能

矩阵实用工具,扩展矩阵和向量的标准库功能

矩阵作为机器学习算法和计算机的基础,因为它们能够有效地处理大型数学运算,标准库拥有所需的一切,但让我们看看如何在实用工具文件中引入若干个函数来扩展它,这些函数在标准库中尚未提供。
preview
数据科学和机器学习(第 16 部分):全新面貌的决策树

数据科学和机器学习(第 16 部分):全新面貌的决策树

在我们的数据科学和机器学习系列的最新一期中,深入到错综复杂的决策树世界。本文专为寻求策略洞察的交易者量身定制,全面回顾了决策树在分析市场趋势中所发挥的强大作用。探索这些算法树的根和分支,解锁它们的潜力,从而强化您的交易决策。加入我们,以全新的视角审视决策树,并探索它们如何在复杂的金融市场航行中成为您的盟友。
preview
DoEasy 函数库中的时间序列(第五十三部分):抽象基准指标类

DoEasy 函数库中的时间序列(第五十三部分):抽象基准指标类

本文研究创建一个抽象指标,其将进一步用作创建函数库标准指标和自定义指标对象的基类。
preview
神经网络变得轻松(第四十七部分):连续动作空间

神经网络变得轻松(第四十七部分):连续动作空间

在本文中,我们扩展了代理者的任务范围。训练过程将包括一些资金和风险管理等方面,这是任何交易策略不可或缺的部分。
preview
利用 MQL5 的交互式 GUI 改进您的交易图表(第 II 部分):可移动 GUI(II)

利用 MQL5 的交互式 GUI 改进您的交易图表(第 II 部分):可移动 GUI(II)

依靠我们的以 MQL5 创建可移动 GUI 的深度指南,在您的交易策略和实用程序中解锁动态数据表达的潜力。深入研究面向对象编程的基本原理,并探索如何在同一图表上轻松高效地设计和实现单个或多个可移动 GUI。
preview
GUI:利用 MQL 创建您自己的图形库的提示和技巧

GUI:利用 MQL 创建您自己的图形库的提示和技巧

我们将通览 GUI 函数库的基础知识,以便您能理解它们如何工作,甚至着手打造您自己的函数库。
preview
构建K线图趋势约束模型(第一部分):针对EA和技术指标

构建K线图趋势约束模型(第一部分):针对EA和技术指标

本文面向初学者和专业的MQL5开发者。它提供了一段代码,用于定义并限制信号生成指标仅在较长的时间框架的趋势中运行。通过这种方式,交易者可以通过融入更广泛的市场视角来增强他们的策略,从而可能产生更稳健和可靠的交易信号。
preview
神经网络变得简单(第 64 部分):保守加权行为克隆(CWBC)方法

神经网络变得简单(第 64 部分):保守加权行为克隆(CWBC)方法

据前几篇文章中所执行测试的结果,我们得出的结论是,训练策略的最优性很大程度上取决于所采用的训练集。在本文中,我们将熟悉一种相当简单,但有效的方法来选择轨迹,并据其训练模型。
preview
开发多币种 EA 交易系统(第 14 部分):风险管理器的适应性交易量变化

开发多币种 EA 交易系统(第 14 部分):风险管理器的适应性交易量变化

之前开发的风险管理器仅包含基本功能,让我们试着探讨其可能的开发方式,使我们能够在不干扰交易策略逻辑的情况下改善交易结果。
preview
掌握 MQL5:从入门到精通(第六部分):开发 EA 交易的基础知识

掌握 MQL5:从入门到精通(第六部分):开发 EA 交易的基础知识

本文继续针对初学者的系列文章。在这里我们将讨论开发 EA 交易的基本原则。我们将创建两个 EA:第一个 EA 不使用指标进行交易,使用挂单,第二个 EA 将基于标准 MA 指标,以当前价格开仓。在这里,我假设你不再是一个完全的初学者,并且对前几篇文章中的材料有相对较好的掌握。
preview
群体优化算法:混合蛙跳算法(SFL)

群体优化算法:混合蛙跳算法(SFL)

本文详细描述了混合蛙跳(Shuffled Frog-Leaping,SFL)算法及其在求解优化问题中的能力。SFL算法的灵感来源于青蛙在自然环境中的行为,为函数优化提供了一种新的方法。SFL算法是一种高效灵活的工具,能够处理各种数据类型并实现最佳解决方案。
preview
在MQL5中实现基于抛物线转向指标(Parabolic SAR)和简单移动平均线(SMA)的快速交易策略算法

在MQL5中实现基于抛物线转向指标(Parabolic SAR)和简单移动平均线(SMA)的快速交易策略算法

在本文中,我们将在MQL5中开发一个快速交易EA,利用抛物线SAR和简单移动平均线(SMA)指标来创建一个响应迅速的交易策略。我们详细介绍了该策略的实施过程,包括指标的使用、信号的生成以及测试和优化过程。
preview
StringFormat(). 回顾和现成的例子

StringFormat(). 回顾和现成的例子

本文继续介绍PrintFormat()函数。我们将简要介绍使用StringFormat()格式化字符串及其在程序中的进一步使用。我们还将编写模板,在终端日志中显示交易品种数据。这篇文章对初学者和有经验的开发人员都很有用。
preview
重构经典策略(第九部分):多时间框架分析(第二部分)

重构经典策略(第九部分):多时间框架分析(第二部分)

在今天的讨论中,我们探讨了多时间框架分析的策略,以确定我们的人工智能(AI)模型在哪个时间框架上表现最优。分析结果表明,在欧元兑美元(EURUSD)货币对上,月度和小时时间框架生成的模型具有相对较低的误差率。我们利用这一优势,开发了一个交易算法,该算法在月度时间框架上进行人工智能预测,并在小时时间框架上执行交易。
preview
MQL5 中的范畴论 (第 8 部分):幺半群(Monoids)

MQL5 中的范畴论 (第 8 部分):幺半群(Monoids)

本文是以 MQL5 实现范畴论系列的延续。 本期,我们引入幺半群作为域(集合),通过包含规则和幺元,将范畴论自其它数据分类方法分离开来。
preview
您应当知道的 MQL5 向导技术(第 07 部分):树状图

您应当知道的 MQL5 向导技术(第 07 部分):树状图

出于分析和预测目的而把数据分类是机器学习中一个非常多样化的领域,它具有大量的方式和方法。本文着眼于一种这样的方式,即集聚层次化分类。
preview
MQL5自动化交易策略(第十四部分):基于MACD-RSI统计方法的交易分层策略

MQL5自动化交易策略(第十四部分):基于MACD-RSI统计方法的交易分层策略

本文将介绍一种结合MACD和RSI指标与统计方法的交易分层策略,通过MQL5实现动态自动化交易。我们将探讨这种级联式策略的架构设计,通过关键代码段详解其实现方式,并指导读者如何进行回测以优化策略表现。最后,我们将总结该策略的潜力,并为自动化交易的进一步优化奠定基础。
preview
在MQL5中构建自优化智能交易系统(EA)(第五部分):自适应交易规则

在MQL5中构建自优化智能交易系统(EA)(第五部分):自适应交易规则

如何完美使用指标的原则,并不总是易于遵循。在市场行情较为平稳的情况下,指标可能会意外地给出不构成交易条件的信号,导致算法交易者错失交易机会。本文将提出一个潜在的解决方案,我们将讨论如何构建能够根据现有市场数据调整其交易规则的交易应用程序。
preview
价格行为分析工具包开发(第12部分):外部资金流(3)趋势图谱(TrendMap)

价格行为分析工具包开发(第12部分):外部资金流(3)趋势图谱(TrendMap)

市场走势由多头与空头之间的力量博弈所决定。由于作用在这些水平上的力量,市场会尊重某些特定价位水平。斐波那契(Fibonacci)水平和成交量加权平均价(VWAP)水平在影响市场行为方面尤为强大。请随我一同探讨本文中基于VWAP和斐波那契水平生成交易信号的策略。
preview
神经网络变得简单(第 68 部分):离线优先引导政策优化

神经网络变得简单(第 68 部分):离线优先引导政策优化

自从第一篇专门讨论强化学习的文章以来,我们以某种方式触及了 2 个问题:探索环境和检定奖励函数。最近的文章曾专门讨论了离线学习中的探索问题。在本文中,我想向您介绍一种算法,其作者完全剔除了奖励函数。
preview
在 MQL5 中创建交互式图形用户界面(第 2 部分):添加控制和响应

在 MQL5 中创建交互式图形用户界面(第 2 部分):添加控制和响应

通过动态功能增强 MQL5 图形用户界面(GUI)面板,可以大大改善用户的交易体验。通过整合互动元素、悬停效果和实时数据更新,该面板成为现代交易者的强大工具。
preview
DoEasy. 控件 (第 13 部分): 优化 WinForms 对象与鼠标的交互,启动开发 TabControl WinForms 对象

DoEasy. 控件 (第 13 部分): 优化 WinForms 对象与鼠标的交互,启动开发 TabControl WinForms 对象

在本文中,我将修复和优化当鼠标光标移离 WinForms 对象后 WinForms 对象的外观处理,并启动开发 TabControl WinForms 对象。
DoEasy 函数库中的图形(第九十三部分):准备创建复合图形对象的功能
DoEasy 函数库中的图形(第九十三部分):准备创建复合图形对象的功能

DoEasy 函数库中的图形(第九十三部分):准备创建复合图形对象的功能

在本文中,我将着手开发用于创建复合图形对象的功能。 该函数库将支持创建复合图形对象,允许这些对象含有任意层次的连接。 我将为这些对象的后续实现准备所有必要的类。
preview
用置信区间估计未来效能

用置信区间估计未来效能

在这篇文章中,我们深入研究自举法技术的应用,作为评估自动化策略未来效能的一种手段。
preview
如何使用MQL5的控件类创建交互式仪表板/面板(第一部分):设置面板

如何使用MQL5的控件类创建交互式仪表板/面板(第一部分):设置面板

在本文中,我们将使用MQL5的控件类创建一个交互式交易仪表板,旨在简化交易操作。该面板包含标题、用于交易、平仓和信息的导航按钮,以及用于执行交易和管理仓位的专用操作按钮。到文章结束时,你将拥有一个基础面板,为未来的扩展做好准备。
preview
DoEasy. 控件(第 16 部分):TabControl WinForms 对象 — 多行选项卡标题,拉伸标题适配容器

DoEasy. 控件(第 16 部分):TabControl WinForms 对象 — 多行选项卡标题,拉伸标题适配容器

在本文中,我将继续开发 TabControl,并针对设置标题大小的所有模式,实现选项卡标题在控件所有四个侧边的排列:正常、固定、和靠右填充。
preview
神经网络变得轻松(第二十八部分):政策梯度算法

神经网络变得轻松(第二十八部分):政策梯度算法

我们继续研究强化学习方法。 在上一篇文章中,我们领略了深度 Q-学习方法。 按这种方法,已训练模型依据在特定情况下采取的行动来预测即将到来的奖励。 然后,根据政策和预期奖励执行动作。 但并不总是能够近似 Q-函数。 有时它的近似不会产生预期的结果。 在这种情况下,近似方法不应用于功用函数,而是应用于动作的直接政策(策略)。 其中一种方法是政策梯度。
preview
用Python重塑经典策略:移动平均线交叉

用Python重塑经典策略:移动平均线交叉

在本文中,我们重新审视了经典的移动平均线交叉策略,以评估其当前的有效性。鉴于该策略自诞生以来已经过去了很长时间,我们探索了人工智能可能为其带来的潜在增强效果。通过融入人工智能技术,我们旨在利用高级的预测能力来潜在地优化交易的入场和出场点,适应不断变化的市场条件,并与传统方法相比提高整体表现。
DoEasy 库中的其他类(第七十部分):扩展功能并自动更新图表对象集合
DoEasy 库中的其他类(第七十部分):扩展功能并自动更新图表对象集合

DoEasy 库中的其他类(第七十部分):扩展功能并自动更新图表对象集合

在本文中,我将扩展图表对象的功能,并编排图表导航、创建屏幕截图、以及为图表保存和应用模板。 此外,我还将实现图表对象集合、其窗口和其内指标的自动更新。
preview
神经网络变得简单(第 67 部分):按照过去的经验解决新任务

神经网络变得简单(第 67 部分):按照过去的经验解决新任务

在本文中,我们将继续讨论收集数据至训练集之中的方法。显然,学习过程需要与环境不断互动。不过,状况可能会有所不同。
preview
种群优化算法:模拟各向同性退火(SIA)算法。第 II 部分

种群优化算法:模拟各向同性退火(SIA)算法。第 II 部分

第一部分专注于众所周知、且流行的算法 — 模拟退火。我们已经通盘研究了它的利弊。本文的第二部分专注于算法的彻底变换,将其转变为一种新的优化算法 — 模拟各向同性退火(SIA)。
preview
交易中的神经网络:一种复杂的轨迹预测方法(Traj-LLM)

交易中的神经网络:一种复杂的轨迹预测方法(Traj-LLM)

在本文中,我想向您介绍一种为解决自动驾驶领域问题而开发的有趣的轨迹预测方法。该方法的作者结合了各种架构解决方案的最佳元素。
preview
MQL5中的替代风险回报标准

MQL5中的替代风险回报标准

在这篇文章中,我们介绍了几种被称为夏普比率(Sharpe ratio)替代品的风险回报标准的实现,并检查了假设的权益曲线以分析其特征。
preview
机器学习中的量化(第 2 部分):数据预处理、表格选择、训练 CatBoost 模型

机器学习中的量化(第 2 部分):数据预处理、表格选择、训练 CatBoost 模型

本文探讨了量化在树模型构建中的实际应用。探讨了选择量化表和数据预处理的方法。没有使用复杂的数学方程。
preview
DoEasy. 控件 (第 3 部分): 创建绑定控件

DoEasy. 控件 (第 3 部分): 创建绑定控件

在本文中,我将创建绑定到基准元素的从属控件。 开发任务将使用基准控件功能执行。 此外,我还会稍微修改一下图形元素阴影对象,因为把它应用于任何有阴影的对象时会遇到一些逻辑错误。
preview
时间序列挖掘的数据标签(第3部分):使用标签数据的示例

时间序列挖掘的数据标签(第3部分):使用标签数据的示例

本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!