
如何利用 MQL5 创建简单的多币种智能交易系统(第 6 部分):两条 RSI 指标相互交叉
本文中的多货币智能系统是一款智能交易系统或交易机器人,它利用两条 RSI 指标线的交叉,即与慢速 RSI 与快速 RSI 两线相交。

神经网络变得轻松(第十四部分):数据聚类
我的上一篇文章已经发表一年多了。 这令我有了大量时间考虑修改思路和发展新方法。 在这篇新文章中,我想转移一下以前使用的监督学习方法。 这次我们将深入研究无监督学习算法。 特别是,我们将考虑一种聚类算法 — k-均值。


DoEasy 函数库中的图形(第七十六部分):会话窗对象和预定义的颜色主题
在本文中,我所述的概念将涵盖构建各种函数库 GUI 设计主题,创建会话窗对象,它是图形元素类对象的衍生后代,并为创建函数库图形对象的阴影准备数据,以及进一步开发功能。

神经网络变得轻松(第四十四部分):动态学习技能
在上一篇文章中,我们讲解了 DIAYN 方法,它提供了学习各种技能的算法。 获得的技能可用在各种任务。 但这些技能可能非常难以预测,而这可能令它们难以运用。 在本文中,我们要研究一种针对学习可预测技能的算法。


通过"单元测试"的帮助来提高代码质量
就算是简单程序也会经常出现看似难以置信的错误。 “我怎么会编出这种东西?”是我们发现这种错误时的第一反应。 “我应该如何避免它?”则是较少会映入脑海的第二个问题。 编写完美无缺的代码是不可能的,特别是在大型项目里,但可通过技术手段及时检测出这些错误。 本文介绍如何借助通用的“单元测试”方法来提高 MQL4 代码质量。


使用 MQL4 的 HTML 引导
HTML 是当今最广泛使用的文件类型之一。MetaTrader 4 客户终端允许你将语句、测试和优化报告保存为 .htm 文件。有时需要从这些位于 MQL4 程序的文件中获取信息。本文描述了如何从 HTML 获得标记结构和内容的一个形式。


将指标代码转移至 Expert Advisor 代码。Expert Advisor 和指标函数的总体结构方案
本文详细介绍将指标代码转移至 Expert Advisor 代码的方式,并详细介绍编写 Expert Advisor 的过程,在此过程中,不调用任何自定义指标,且整个程序代码用于计算 Expert Advisor 中的必要指标值。本文提供 Expert Advisor 更改的总体方案,以及基于自定义指标构建指标函数的想法。本文面向拥有使用 MQL4 语言进行编程的经验的读者。


DoEasy 库中的其他类(第六十九部分):图表对象集合类
在本文里,我启动图表对象集合类的开发。 该类存储图表对象及其子窗口和指标的集合列表,从而提供操控任何选定图表及其子窗口的能力,亦或同时处理多个图表列表。

从头开始开发智能交易系统(第 15 部分):访问 web 上的数据(I)
如何通过 MetaTrader 5 访问在线数据? 互联网上有很多网站,提供海量信息。 您需要知道的是,在哪里查找、以及如何才能最好地利用这些信息。


在 MQL4.Community上轻松简单地公布影音图像
通常通过展示总是会比文字描述收益更多。我们在本文中提供一个简单的方法。通过使用CamStudio创建影音图像在上 MQL4.community 论坛公布。

构建自动运行的 EA(第 07 部分):账户类型(II)
今天,我们将看到如何创建一个在自动模式下简单安全地工作的智能系统。 交易者应当始终明白自动 EA 正在做什么,以便若它“偏离轨道”,交易者可以尽早将其从图表中删除,并控制事态。

用于时间序列挖掘的数据标签(第 5 部分):使用 Socket 在 EA 中进行应用和测试
本系列文章介绍了几种时间序列标注方法,可以创建符合大多数人工智能模型的数据,根据需求有针对性地进行数据标注,可以使训练出来的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!

开发多币种 EA 交易(第 3 部分):架构修改
我们在开发多币种 EA 方面已经取得了一些进展,该 EA 有几个并行工作的策略。考虑到所积累的经验,让我们回顾一下我们解决方案的架构,并尝试在我们走得太远之前对其进行改进吧。

在 Linux 上利用 C++ 多线程支持开发 MetaTrader 5 概念验证 DLL
我们将开始探索如何仅基于 Linux 系统开发 MetaTrader 5 平台的步骤和工作流程,其中最终产品能在 Windows 和 Linux 系统上无缝运行。 我们将了解 Wine 和 Mingw;两者都是制作跨平台开发任务的基本工具。 特别是 Mingw 的线程实现(POSIX 和 Win32),我们在选择追随哪一个时需要仔细考虑。 然后,我们构建一个能在 MQL5 代码中所用的概念验证 DLL,最后比较两种线程实现的性能。 这一切都是为了您的基金能进一步扩张自己。 阅读本文后,您应该可以轻松地在 Linux 上构建 MT 相关工具。

神经网络变得轻松(第三十四部分):全部参数化的分位数函数
我们继续研究分布式 Q-学习算法。 在之前的文章中,我们研究了分布式和分位数 Q-学习算法。 在第一种算法当中,我们训练了给定数值范围的概率。 在第二种算法中,我们用给定的概率训练了范围。 在这两个发行版中,我们采用了一个先验分布知识,并训练了另一个。 在本文中,我们将研究一种算法,其允许模型针对两种分布进行训练。


DoEasy 库中的其他类(第七十二部分):跟踪并记录集合中的图表对象参数
在本文中,我将完成图表对象类及其集合的操控。 我还将实现图表属性及其窗口变化的自动跟踪,以及把新参数保存到对象属性。 如此修订允许在未来实现整个图表集合的事件功能。


DoEasy 函数库中的时间序列(第四十八部分):在单一子窗口里基于一个缓冲区的多周期、多品种指标
本文研究了一个示例,该示例使用单个指标缓冲区来创建多品种、多周期标准指标,以便在指标子窗口中进行构造和操作。 我会准备库类,以便在程序主窗口中与标准指标一起操作,并有多个缓冲区来显示其数据。

MQL5集成:Python
Python是一种广为人知且流行的语言,具有许多功能,尤其是在金融、数据科学、人工智能和机器学习领域。Python也是一种强大的工具,可以在交易中发挥作用。MQL5允许我们将这种强大的语言作为集成工具,以高效地实现我们的目标。在本文中,我们将在了解一些Python的基本信息后,分享如何在MQL5中使用Python作为集成工具。

并行粒子群优化
本文介绍了一种基于粒子群算法的快速优化方法。本文还介绍了MQL中的方法实现,它既可以在EA交易内部的单线程模式下使用,也可以作为在本地测试人员代理上运行的附加组件在并行多线程模式下使用。


MQL5.community 中的名人?
MQL5.com 网站能够记住你的一切!你有多少帖子受热捧,您的文章有多受欢迎,您的程序在代码库中被下载了多少次 – 这仅仅是 MQL5.com 记住的一小部分。您的成就可以在个人资料中找到,但是整体情况呢?在本文中,我将显示所有 MQL5.community 会员成就的概貌。

数据科学与机器学习(第 06 部分):梯度下降
梯度下降在训练神经网络和许多机器学习算法中起着重要作用。 它是一种快速而智能的算法,尽管它的工作令人印象深刻,但它仍然被许多数据科学家误解,我们来看看有关它的全部。


图形界面 X: 升级渲染表格及代码优化 (集成编译 10)
我们继续为渲染表格 (CCanvasTable) 完善新的功能。表格现在将具有: 当悬浮时高亮显示; 为每个单元格添加一个图标数组的能力, 以及一种切换它们的方法; 在运行时设置或修改单元格文本的能力等等。


MQL5 应用商店 2013 年二季度业绩
成功运营一年半的“MQL5 应用商店”,已成为了最大的交易策略与技术指标交易商店。全世界有 350 位开发者在此提供了大约 800 款交易应用程序。交易者为其 MetaTrader 5 终端购买和下载的交易程序,已逾 100.000。


如何成为2008自动交易锦标赛的参赛者?
举办锦标赛的主要目的 - 推广自动交易并且积累自动交易的实用信息。作为锦标赛的主办方-- 我们将致力保持锦标赛的公正性并防止一切企图欺骗的行为。 为此设定了严格的锦标赛规则。