

MetaTrader 4 与 MetaTrader 5 交易信号组件
MetaTrader 4 和 MetaTrader 5 用户最近得到了成为“信号提供方”并赚取更多收益的机会。现在,您可以利用新组件,在您的网站、博客或社交网络上展示您的成功交易了。使用组件的好处显而易见:它们会提高“信号提供方”的受欢迎程度、树立其作为成功交易者的声名,并吸引到新的“订阅者”。在其它网站上放置这些组件的所有交易者,也都享受到了上述好处。

如何在 MQL5.com 上造就成功的信号提供者
在本文中我的主要目标是为您提供一个简单而精准的步骤说明,助您变身 MQL5.com 上的顶级信号提供者。 借鉴我的知识和经验,我将讲解如何造就一名成功的信号提供者,包括如何寻找、测试、和优化一个优秀的策略。 此外,我将提供有关发布信号、撰写令人信服的推介、以及有效推广和管理信号的提示。


最新的改革
看一看您的交易终端。您能看到哪些价格展示方式?柱、烛形图和线条。我们追求的是时间和价格,但却只能由价格获利。那么,分析市场时,我们能否只关注价格呢?本文会针对点数图("圈圈叉叉")提出一种算法和脚本 - 已将各种各样的价格模式考虑在内,而其实际应用亦于提供的建议中列出。


利用 MQL5 和 MQL4 实现的选择和导航实用程序:添加"homework"选项卡并保存图形对象
在本文中,我们打算扩展先前创建的实用程序功能,添加用于选择所需品种的选项卡。 我们还将学习如何保存我们在特定品种图表上创建的图形对象,这样我们就不必再次创建它们。 此外,我们将发掘如何仅使用已操控经指定网站初步遴选的品种。

如何选择智能系统:拒绝一款交易机器人的 20 条强大准则
本文尝试回答这个问题:我们如何选择正确的智能系统? 哪些最适合我们的投资组合,我们如何过滤市场上提供的庞大交易机器人列表? 本文将介绍二十条明确而强大的准则来拒绝一款智能系统。 每条提出的准则都将得到很好的解释,从而帮助您做出更持久的决定,并为您建立一个更有前途的智能系统集合,从而赚取利润。

从头开始开发智能交易系统(第 20 部分):新订单系统 (III)
我们继续实现新的订单系统。 创建这样的一个系统需要熟练地掌握 MQL5,以及了解 MetaTrader 5 平台的实际工作方式,及其提供的资源。

从头开始开发智能交易系统(第 26 部分):面向未来(I)
今天,我们将把我们的订单系统提升到一个新的层次。 但在此之前,我们需要解决少量问题。 我们现有的一些问题,是与在交易日里我们想要如何工作,以及我们做什么事情相关。

从自营公司那里吸取一些教训(第 1 部分)— 简介
在这篇介绍性文章中,我将讨论从自营交易公司实施的挑战规则中吸取的一些教训。 这对于初学者和那些努力在这个交易世界中站稳脚跟的人来说尤其重要。 后续文章会介绍代码实现。


基于 CChartObject 类设计和实施新 GUI 组件
在我撰写了关于通过 GUI 界面实现半自动“EA 交易”的前作后,结果表明针对更复杂的指标和“EA 交易”,最好使用新的功能来改善界面。在熟悉 MQL5 标准库类后,我实施了一些新的组件。本文介绍新 MQL5 GUI 组件的设计和实施过程;这些组件可用于指标和“EA 交易”。本文中介绍的组件包括:CChartObjectSpinner、CChartObjectProgressBar 和 CChartObjectEditTable。


MQL5 中的电子表格
本文介绍在其第一个维度中包含不同类型的数据的动态二维数组的类。以表格的形式存储数据可方便地解决与安排、存储和操作不同类型的绑定信息相关的各种问题。实施表格处理功能性的类的源代码已附于本文。

学习如何基于比尔·威廉姆斯(Bill Williams)的 MFI 设计交易系统
这是该系列中的一篇新文章,我们将学习如何根据流行的技术指标设计交易系统。 这次我们将涵盖比尔·威廉姆斯(Bill Williams)的市场促进指数(BW MFI)。

神经网络变得轻松(第七部分):自适应优化方法
在之前的文章中,我们利用随机梯度下降法针对网络中的所有神经元按照相同的学习率训练神经网络。 在本文中,我提议着眼于自适应学习方法,该方法能够改变每个神经元的学习率。 我们还将研究这种方法的利弊。

创建多交易品种、多周期指标
在本文中,我们将研究创建多交易品种、多周期指标的原则。我们还将了解如何从 EA 交易和其他指标中获取此类指标的数据。我们将探讨在 EA 交易和指标中使用多指标的主要功能,并将了解如何通过自定义指标缓冲区绘制它们。

MQL5 简介(第 1 部分):算法交易新手指南
通过我们的 MQL5 编程新手指南,进入算法交易的迷人领域。在揭开自动化交易世界的神秘面纱之际,让我们探索支持MetaTrader 5 的语言 MQL5 的精髓。从了解基础知识到迈出编码的第一步,本文是您即使没有编程背景也能释放算法交易潜力的关键。加入我们的旅程,在令人兴奋的 MQL5 世界里,体验简单与复杂的结合吧。

数据科学和机器学习(第 05 部分):决策树
决策树模仿人类的方式针对数据进行分类。 我们看看如何构建这棵树,并利用它们来分类和预测一些数据。 决策树算法的主要目标是将含有杂质的数据分离成纯节点或靠近节点。

直推和主动机器学习中的梯度提升
在本文中,我们将探讨利用真实数据的主动机器学习方法,并讨论它们的优缺点。也许你会发现这些方法很有用,并将它们包含在你的机器学习模型库中。直推是由支持向量机(SVM)的共同发明者弗拉基米尔·瓦普尼克(Vladimir Vapnik)提出的。


扩充策略构建器功能
在前两篇文章之中,我们讨论了 Merrill (美林)形态针对各种数据类型的应用。 并开发了一款应用程序来测试提出的思路。 在本文中,我们将继续策略构建器的工作,来提高其效率,并实现新的功能。


MetaTrader应用商店2013年第三季度业绩
又过了一个季度,我们已决定统计MetaTrader 应用商店的业绩 - MetaTrader平台最大的交易机器人和技术指标商店。 直至报告季度末期,有500多名开发者已经将他们的1200个产品放入MetaTrader 应用商店。

MetaTrader 中的多机器人:从单图表中启动多个机器人
在本文中,我将研究一个简单的模板,用来创建通用的 MetaTrader 机器人,该机器人可以在多个图表上使用,同时仅附加到一个图表,无需在每个单独的图表上为每个机器人实例进行配置。

一张图表上的多个指标(第 05 部分):将 MetaTrader 5 转变为 RAD 系统(I)
有很多人不知道如何编程,但他们很有创造力,亦有杰出的想法。 然而,由于缺乏编程知识,他们无法实现这些想法。 我们一起看看如何利用 MetaTrader 5 平台本身创建图表交易,就如同它是一个 IDE。


MQL5 Cookbook: 减少过度配合的影响以及处理报价缺失
无论您使用何种交易策略,总会有一个问题:怎样选择参数以保证未来的利润。本文提供了一个EA交易的实例,使您可以同时优化多个交易品种的参数,这种方法是未了减少参数的过度配合以及处理在研究中来自单个交易品种的数据不足的问题。


DoEasy 函数库中的时间序列(第六十一部分):品种即时报价序列集合
鉴于程序在其运行时可能会用到不同的品种,因此应为每个品种创建一个单独的列表。 在本文中,我将把这些列表合并到一个即时报价数据集合。 实际上,这将是一个常规列表,基于指向标准库 CObject 类及其衍生类实例指针的动态数组。