MQL4和MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
基于主成分的特征选择与降维

基于主成分的特征选择与降维

本文深入探讨了改进型前向选择成分分析(Forward Selection Component Analysis,FSCA)算法的实现,该算法灵感源自Luca Puggini和Sean McLoone在《前向选择成分分析:算法与应用》一文中所提出的研究。
preview
市场轮廓指标 (第二部分):基于画布的优化与渲染

市场轮廓指标 (第二部分):基于画布的优化与渲染

本文探讨了一种优化后的市场轮廓指标,该版本用基于 CCanvas 类对象(即画布)的渲染,取代了原先使用多个图形对象进行渲染的方式。
preview
将 MQL5 与数据处理包集成 (第 2 部分):机器学习和预测分析

将 MQL5 与数据处理包集成 (第 2 部分):机器学习和预测分析

在我们关于将 MQL5 与数据处理包集成的系列文章中,我们深入研究了机器学习和预测分析的强大组合。我们将探索如何将 MQL5 与流行的机器学习库无缝连接,以便为金融市场提供复杂的预测模型。
preview
交易中的神经网络:通过Adam-mini优化减少内存消耗

交易中的神经网络:通过Adam-mini优化减少内存消耗

提高模型训练和收敛效率的一个方向是改进优化方法。Adam-mini是一种自适应优化方法,旨在改进基础的Adam算法。
preview
交易中的神经网络:场景感知物体检测(HyperDet3D)

交易中的神经网络:场景感知物体检测(HyperDet3D)

我们邀请您来领略一种利用超网络检测物体的新方式。超网络针对主模型生成权重,允许参考具体的当前市场形势。这种方式令我们能够通过令模型适配不同的交易条件来提升预测准确性。
preview
基于三维反转形态的算法交易

基于三维反转形态的算法交易

在三维K线上探索自动化交易的新世界。基于多维价格K线的交易机器人是什么样的?三维K线中的“黄色”簇群能否预测趋势反转?多维交易是什么样的?
preview
从基础到中级:变量(II)

从基础到中级:变量(II)

今天,我们将探讨如何使用静态变量。这个问题常常让许多程序员感到困惑,无论是初学者还是有一定经验的开发者,因为使用这一机制时需要遵循一些特定的建议。本文旨在为教学目的提供材料。在任何情况下,应用程序都应仅用于学习和掌握所介绍的概念。
preview
种群优化算法:人工多社区搜索对象(MSO)

种群优化算法:人工多社区搜索对象(MSO)

这是上一篇研究社群概念文章的延续。本文使用迁徙和记忆算法探讨社群的演化。结果将有助于理解社区系统的演化,并将其应用于优化和寻找解。
preview
您应当知道的 MQL5 向导技术(第 36 部分):依据马尔可夫(Markov)链的 Q-学习

您应当知道的 MQL5 向导技术(第 36 部分):依据马尔可夫(Markov)链的 Q-学习

强化学习是机器学习的三大信条之一,并肩两个是监督学习和无监督学习。因此,它在意的是最优控制,或学习最适合目标函数的最佳长期政策。正是在这种背衬下,我们探索其向一款由向导组装的智能系统中 MLP 中通知学习过程的可能作用。
preview
神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

在上一篇文章中,我们领略了一种从图像中检测对象的方法。不过,处理静态图像与处理动态时间序列(例如我们所分析的价格动态)有些不同。在本文中,我们将研究检测视频中对象的方法,其可在某种程度上更接近我们正在解决的问题。
preview
非洲水牛优化(ABO)

非洲水牛优化(ABO)

本文介绍了非洲水牛优化(ABO)算法,这是一种于2015年开发的元启发式方法,基于这些动物的独特行为。文章详细描述了算法实现的各个阶段及其在解决复杂问题时的效率,这使得它成为优化领域中一个有价值的工具。
preview
让新闻交易轻松上手(第4部分):性能增强

让新闻交易轻松上手(第4部分):性能增强

本文将深入探讨改进EA在策略测试器中运行时间的方法,通过编写代码将新闻事件时间按小时分类。在指定的小时段内将访问这些新闻事件。这样确保了EA能够在高波动性和低波动性环境中高效管理事件驱动的交易。
preview
交易中的神经网络:免掩码注意力方式预测价格走势

交易中的神经网络:免掩码注意力方式预测价格走势

在本文中,我们将讨论免掩码注意力变换器(MAFT)方法,及其在交易领域的应用。不同于传统的变换器,即处理序列时需要数据掩码,MAFT 通过消除掩码需求来优化注意力过程,显著改进了计算效率。
preview
从基础到中级:SWITCH 语句

从基础到中级:SWITCH 语句

在本文中,我们将学习如何以最简单、最基本的形式使用 SWITCH 语句。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
在外汇数据分析中使用关联规则

在外汇数据分析中使用关联规则

如何将超市零售分析中的预测规则应用于真实的外汇市场?购买饼干、牛奶和面包与证券交易所的交易有何关联?本文讨论了一种基于关联规则的算法交易的创新方法。
preview
群体自适应矩估计(ADAM)优化算法

群体自适应矩估计(ADAM)优化算法

本文介绍了将广为人知且广受欢迎的ADAM梯度优化方法转变为群体算法的过程,并介绍了通过引入混合个体对其进行改进的方案。这种新方法能够利用概率分布创建融合了成功决策要素的智能体。关键创新点在于形成了群体混合个体,这些个体能够自适应地积累来自最具潜力解决方案的信息,从而提高了在复杂多维空间中的搜索效率。
preview
开发回放系统(第 64 部分):玩转服务(五)

开发回放系统(第 64 部分):玩转服务(五)

在本文中,我们将介绍如何修复代码中的两个错误。然而,我将尝试以一种有助于初学者程序员理解事情并不总是如你所愿的方式解释它们。无论如何,这是一个学习的机会。此处提供的内容仅用于教育目的。本应用程序不应被视为最终文件,其目的除了探讨所提出的概念之外,不应有任何其它用途。
preview
开发回放系统(第 55 部分):控制模块

开发回放系统(第 55 部分):控制模块

在本文中,我们将实现一个控制指标,以便它可以集成到我们正在开发的消息系统中。虽然这并不难,但关于这个模块的初始化,有一些细节需要了解。此处提供的材料仅用于教育目的。除了学习和掌握所示的概念外,绝不应将其视为任何目的的应用程序。
preview
适应性社会行为优化(ASBO):两阶段演变

适应性社会行为优化(ASBO):两阶段演变

我们继续探讨生物体的社会行为及其对新数学模型 ASBO(适应性社会行为优化)开发的影响。我们将深入研究两阶段演变,测试算法并得出结论。正如在自然界中,一群生物体共同努力生存一样,ASBO 使用集体行为原理来解决复杂的优化问题。
preview
交易中的神经网络:超点变换器(SPFormer)

交易中的神经网络:超点变换器(SPFormer)

在本文中,我们概述一种基于“超点变换器”(SPFormer) 的三维物体分段方法,其剔除了对中间数据聚合的需求。这加快了分段过程,并提高了模型的性能。
preview
神经网络实践:伪逆(I)

神经网络实践:伪逆(I)

今天,我们将开始探讨如何在纯MQL5语言中实现伪逆的计算。即将展示的代码对于初学者来说可能比我预期的要复杂得多,我还在思考如何以简单的方式解释它。所以,现在请将其视为学习一些不寻常代码的机会。请保持冷静和专注。虽然它并不旨在高效或快速应用,但其目标是尽可能具有教育意义。
preview
从基础到中级:WHILE 和 DO WHILE 语句

从基础到中级:WHILE 和 DO WHILE 语句

在本文中,我们将对第一个循环语句进行实用且非常直观的介绍。尽管许多初学者在面对创建循环的任务时感到害怕,但知道如何正确安全地完成它只能通过经验和练习来实现。但谁知道呢,也许我可以通过向你展示在代码中使用循环时的主要问题和预防措施来减少你的麻烦和痛苦。
preview
交易中的神经网络:探索局部数据结构

交易中的神经网络:探索局部数据结构

在嘈杂的条件下有效识别和预存市场数据的局部结构是交易中的一项关键任务。运用自注意力机制在处理这类数据方面展现出可喜的结果;不过,经典方式并未考虑底层结构的局部特征。在本文中,我将引入一种能够协同这些结构依赖关系的算法。
preview
交易中的神经网络:层次化向量变换器(终章)

交易中的神经网络:层次化向量变换器(终章)

我们继续研究层次化向量变换器方法。在本文中,我们将完成模型的构造。我们还会在真实历史数据上对其进行训练和测试。
preview
在任何市场中获得优势(第三部分):Visa消费指数

在任何市场中获得优势(第三部分):Visa消费指数

在大数据的世界里,有数以百万计的备选数据集,它们有可能提升我们的交易策略。在这一系列文章中,我们将帮助您识别最有信息量的公开数据集。
preview
您应当知道的 MQL5 向导技术(第 18 部分):配合本征向量进行神经架构搜索

您应当知道的 MQL5 向导技术(第 18 部分):配合本征向量进行神经架构搜索

神经架构搜素,是一种判定理想神经网络设置的自动化方式,在面对许多选项和大型测试数据集时可能是一个加分项。我们试验了当本征向量搭配时,如何令这个过程更加高效。
preview
ALGLIB库优化方法(第一部分)

ALGLIB库优化方法(第一部分)

在本文中,我们将了解适用于MQL5的ALGLIB库的优化方法。本文包含了使用ALGLIB解决优化问题的简单且清晰的示例,旨在使读者能够尽可能轻松地掌握这些方法。我们将详细探讨BLEIC、L-BFGS和NS等算法的连接方式,并使用它们来解决一个简单的测试问题。
preview
将 Discord 与 MetaTrader 5 集成:构建具有实时通知功能的交易机器人

将 Discord 与 MetaTrader 5 集成:构建具有实时通知功能的交易机器人

本文将介绍如何将 MetaTrader 5 与 Discord 服务器集成,以便能从任何地方实时接收交易通知。我们将了解如何配置平台和 Discord,以启用向 Discord 发送警报的功能。我们还将讨论在使用 WebRequests 和 webhook 实现此类警报解决方案时可能引发的安全问题。
preview
名义变量的序数编码

名义变量的序数编码

在本文中,我们将讨论并演示如何使用Python和MQL5将名义预测变量转换为适合机器学习算法的数值格式。
preview
交易中的神经网络:受控分段(终章)

交易中的神经网络:受控分段(终章)

我们继续上一篇文章中开启的工作,使用 MQL5 构建 RefMask3D 框架。该框架旨在全面研究点云中的多模态互动和特征分析,随后基于自然语言提供的描述进行目标对象识别。
preview
交易中的神经网络:双曲型潜在扩散模型(终篇)

交易中的神经网络:双曲型潜在扩散模型(终篇)

正如 HypDIff 框架所提议,使用各向异性扩散过程针对双曲潜在空间中的初始数据进行编码,助力保留当前市场状况的拓扑特征,并提升其分析品质。在上一篇文章中,我们开始利用 MQL5 实现所提议的方式。今天,我们将继续我们已开始的工作,并得出合乎逻辑的结论。
preview
您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

“深度-Q-网络” 是一种强化学习算法,在机器学习模块的训练过程中,神经网络参与预测下一个 Q 值和理想动作。我们曾研究过另一种强化学习算法 “Q-学习”。本文因此出示了另一个如何配以强化学习训练 MLP 的示例,可于自定义信号类中所用。
preview
原子轨道搜索(AOS)算法:改进与拓展

原子轨道搜索(AOS)算法:改进与拓展

在本文的第二部分,我们将继续开发一种改进版的原子轨道搜索(AOS)算法,重点聚焦于特定操作符的优化设计,以提升算法的效率和适应性。在分析了该算法的基本原理和运行机制之后,我们将探讨提升其性能以及分析复杂解空间能力的方法,并提出新的思路以扩展其作为优化工具的功能。
preview
Connexus观察者模式(第8部分):添加一个观察者请求

Connexus观察者模式(第8部分):添加一个观察者请求

在本系列文章的最后一篇中,我们探讨了观察者模式(Observer Pattern) 在Connexus库中的实现,同时对文件路径和方法名进行了必要的重构优化。该系列文章完整地记录了Connexus库的开发过程——这是一个专为简化复杂应用中的HTTP通信而设计的工具库。
preview
您应当知道的 MQL5 向导技术(第 37 部分):配以线性和 Matérn 内核的高斯过程回归

您应当知道的 MQL5 向导技术(第 37 部分):配以线性和 Matérn 内核的高斯过程回归

线性内核是机器学习中,针对线性回归和支持向量机所用的同类中最简单的矩阵。另一方面,Matérn 内核是我们在之前的文章中讲述的径向基函数的更普遍版本,它擅长映射不如 RBF 假设那样平滑的函数。我们构建了一个自定义信号类,即利用两个内核来预测做多和做空条件。
preview
从零开始在MQL5中实现移动平均线:简单明了

从零开始在MQL5中实现移动平均线:简单明了

我们将通过简单的示例,探究移动平均线的计算原理,同时了解优化指标计算(包括移动平均线计算)的方法。
preview
在Python和MQL5中应用局部特征选择

在Python和MQL5中应用局部特征选择

本文探讨了Narges Armanfard等人在论文《数据分类的局部特征选择》中介绍的一种特征选择算法。该算法使用Python实现,用于构建二元分类器模型,这些模型可以与MetaTrader 5应用程序集成以进行推理。
preview
创建 MQL5-Telegram 集成 EA 交易(第 7 部分):图表指标自动化的命令分析

创建 MQL5-Telegram 集成 EA 交易(第 7 部分):图表指标自动化的命令分析

在本文中,我们将探讨如何将 Telegram 命令与 MQL5 集成,以自动在交易图表上添加指标。我们涵盖了解析用户命令、在MQL5中执行命令以及测试系统以确保基于指标的交易顺利进行的过程
preview
从基础到中级:IF ELSE

从基础到中级:IF ELSE

在本文中,我们将讨论如何使用 IF 操作符及其伴随者 ELSE。这个语句是所有编程语言中最为重要且最有意义的语句。然而,尽管它易于使用,但如果我们没有使用它的经验以及与之相关的概念,它有时会令人困惑。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

本文介绍了最初是为天气预报而开发的“构象(Conformer)”算法,其变化多端之处可与金融市场相提并论。“构象(Conformer)”是一种复杂的方法。它结合了关注度模型和常微分方程的优点。