MQL4和MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
在一张图表上的多个指标(第 02 部分):首次实验

在一张图表上的多个指标(第 02 部分):首次实验

在前一篇文章“在一张图表上的多个指标”中,我介绍了如何在一张图表上加载多个指标的概念和基本知识。 在本文中,我将提供源代码,并对其进行详解。
preview
如何在 MQL5 中使用 ONNX 模型

如何在 MQL5 中使用 ONNX 模型

ONNX(开放式神经网络交换)是一种开源的机器学习模型格式。 在本文中,我们将研究如何创建 CNN-LSTM 模型,来预测金融时间序列。 我们还将展示如何在 MQL5 智能系统中运用创建的 ONNX 模型。
preview
如何利用 MQL5 创建简单的多币种智能交易系统(第 1 部分):基于 ADX 指标的信号,并结合抛物线 SAR

如何利用 MQL5 创建简单的多币种智能交易系统(第 1 部分):基于 ADX 指标的信号,并结合抛物线 SAR

本文中的多币种智能交易系统是交易机器人,它只能在单一品种图表中运营,但可交易(开单、平单和管理订单)超过一个品种对。
preview
为EA交易提供指标的现成模板(第3部分):趋势指标

为EA交易提供指标的现成模板(第3部分):趋势指标

在这篇参考文章中,我们将研究趋势指标类别中的标准指标。我们将创建现成的模板,用于EA中的指标使用——声明和设置参数、指标初始化和析构,以及从EA中的指示符缓冲区接收数据和信号。
preview
神经网络实验(第 6 部分):自给自足的价格预测工具 — 感知器

神经网络实验(第 6 部分):自给自足的价格预测工具 — 感知器

本文提供了一个的示例,运用感知器作为自给自足的价格预测工具,展示其一般概念和最简单的已制备智能系统,然后是其优化结果。
preview
DoEasy. 控件 (第 1 部分): 第一步

DoEasy. 控件 (第 1 部分): 第一步

本文开始延展话题,介绍如何利用 MQL5 仿照 Windows 窗体样式创建控件。 我感兴趣的第一个对象是创建面板(panel)类。 若是没有控件,那么管理就会变得越来越困难。 因此,我将仿照 Windows 窗体样式创建所有可能的控件。
preview
在莫斯科交易所(MOEX)里使用破位挂单的自动兑换网格交易

在莫斯科交易所(MOEX)里使用破位挂单的自动兑换网格交易

本文探讨在莫斯科交易所(MOEX)里基于破位挂单的网格交易方法如何在 MQL5 智能系统中实现。 在市场上进行交易时,最简单的策略之一是设计“捕捉”市场价格的订单网格。
MQL5 信号的优势
MQL5 信号的优势

MQL5 信号的优势

MetaTrader 5 最近引入了交易信号服务,允许交易者复制任何信号提供者的交易操作。用户可以于其账户选择任何信号、执行订阅并复制所有交易记录。而信号提供者可以设定其订阅价格,并从其订阅者每月收取固定的费用。
金融证券的叠加和干扰
金融证券的叠加和干扰

金融证券的叠加和干扰

随着影响货币对行为受到更多因素影响,评估其行为和对未来进行预测将愈发困难。 因此,如果我们成功提取货币对的组成部分,随时间改变的国家货币值,通过和带有此货币以及影响其行为的多个因素的货币对相比较,我们便可以相当程度上界定国家货币移动的自由度。 因此我们可以提高对其行为评估和未来预测的精准度。 如何办到?
市场变动及其预测的统计分析
市场变动及其预测的统计分析

市场变动及其预测的统计分析

本文深入探讨统计方法在市场中的广泛机会。遗憾的是,交易新手故意不应用非常强大的统计学。同时,这又是他们在分析市场时潜意识使用的唯一工具。此外,统计可以为很多问题给出回答。
为嘉盛开发群集指标的理论基础
为嘉盛开发群集指标的理论基础

为嘉盛开发群集指标的理论基础

群集指标是一系列将货币对分成独立的货币的指标。指标允许跟踪相对货币波动,确定形成新的货币趋势的潜能,接收交易信号,以及追踪中期和长期仓位。
preview
从头开始开发智能交易系统(第 10 部分):访问自定义指标

从头开始开发智能交易系统(第 10 部分):访问自定义指标

如何在智能交易系统中直接访问自定义指标? 一款交易 EA 仅在能够使用自定义指标的情况下才是真正有用;否则,它只是一组代码和指令而已。
preview
种群优化算法:人工蜂群(ABC)

种群优化算法:人工蜂群(ABC)

在本文中,我们将研究人工蜂群的算法,并用研究函数空间得到的新原理来补充我们的知识库。 在本文中,我将陈列我对经典算法版本的解释。
preview
艾伦·安德鲁斯和他的时间序列分析技术

艾伦·安德鲁斯和他的时间序列分析技术

艾伦·安德鲁斯(Alan Andrews)是现世代在交易领域最著名的“教育家”之一。 他的“草叉”几乎包含在所有现代报价分析程序当中。 但大多数交易者没机会用过此工具,甚至是其提供的一小部分。 此外,安德鲁斯最初的培训课程不仅包括对草叉的描述(尽管它仍然是主要工具),还包括其它一些有用的结构。 本文提供了对安德鲁斯在其原始课程中教授的奇妙图表分析方法的见解。 (流量焦虑用户)请当心,会有很多图像。
preview
神经网络变得轻松(第二十一部分):变分自动编码器(VAE)

神经网络变得轻松(第二十一部分):变分自动编码器(VAE)

在上一篇文章中,我们已熟悉了自动编码器算法。 像其它任何算法一样,它也有其优点和缺点。 在其原始实现中,自动编码器会尽可能多地将对象与训练样本分开。 这次我们将讨论如何应对它的一些缺点。
使用 Linux 交易
使用 Linux 交易

使用 Linux 交易

本文描述了如何使用指示器在线观察金融市场的状况。
preview
数据科学与机器学习(第 10 部分):岭回归

数据科学与机器学习(第 10 部分):岭回归

岭回归是一种简单的技术,可降低模型复杂度,并防止简单线性回归可能导致的过度拟合。
基于大众交易策略和交易机器人优化点金术的 Expert Advisor(续)
基于大众交易策略和交易机器人优化点金术的 Expert Advisor(续)

基于大众交易策略和交易机器人优化点金术的 Expert Advisor(续)

在本文中,作者提出了用于改进前面几篇文章介绍的交易系统的方法。本文适用于已有 Expert Advisor 编写经验的交易者。
preview
种群优化算法:萤火虫算法(FA)

种群优化算法:萤火虫算法(FA)

在本文中,我将研究萤火虫算法(FA)优化方法。 致谢优化修订,该算法已从局外人变成了评级表上的真正领先者。
preview
学习如何基于 MFI 设计交易系统

学习如何基于 MFI 设计交易系统

这篇新文章出自我们的系列文章,是有关基于最流行的技术指标设计交易系统,它研究了一个新的技术指标 — 资金流动性指数(MFI)。 我们将详细学习它,利用 MQL5 开发一个简单的交易系统,并在 MetaTrader 5 中执行它。
preview
学习如何基于建仓/派发(AD)设计交易系统

学习如何基于建仓/派发(AD)设计交易系统

欢迎阅读本系列的新文章,了解如何基于最流行的技术指标设计交易系统。 在本文中,我们将学习一种新的技术指标,称为建仓/派发指标,并了解如何基于简单的 AD 交易策略设计一款 MQL5 交易系统。
山型或冰山型图表
山型或冰山型图表

山型或冰山型图表

您如何看待往 MetaTrader 5 平台里添加新图表类型的想法? 有人说它缺少其它平台里提供的一些东西。 但事实是,MetaTrader 5 是一个非常实用的平台,因为它允许您做到在许多其它平台上无法完成(或至少不能轻松完成)的事情。
通过脉动进行市场诊断
通过脉动进行市场诊断

通过脉动进行市场诊断

本文尝试将特定市场及其时间段的强度可视化,以检测其规律性和行为模式。
preview
MQL5 中的矩阵和向量操作

MQL5 中的矩阵和向量操作

MQL5 中引入了矩阵和向量,用于实现数学解决方案的高效操作。 新类型提供了内置方法,能够创建接近数学标记符号的简洁易懂的代码。 数组提供了广泛的功能,但在很多情况下,矩阵的效率要高得多。
preview
重温默里(Murrey)系统

重温默里(Murrey)系统

图形价格分析系统在交易者中当之无愧地广受欢迎。 在本文中,我将讲述完整的默里(Murrey)系统,包括其著名的级别,以及其它一些评估当前价格位置,并据其做出交易决策的实用技术。
DoEasy 函数库中的时间序列(第三十六部分):所有用到的品种周期的时间序列对象
DoEasy 函数库中的时间序列(第三十六部分):所有用到的品种周期的时间序列对象

DoEasy 函数库中的时间序列(第三十六部分):所有用到的品种周期的时间序列对象

在本文中我们将探讨,把每个用到的品种周期的柱形对象列表合并到单一品种时间序列对象之中。 因此,每个品种均含一个对象,存储所有已用到品种时间序列周期的列表。
preview
神经网络变得轻松(第二十部分):自动编码器

神经网络变得轻松(第二十部分):自动编码器

我们继续研究无监督学习算法。 一些读者可能对最近发表的与神经网络主题的相关性有疑问。 在这篇新文章中,我们回到了对神经网络的研究。
preview
数据科学与机器学习 — 神经网络(第 01 部分):前馈神经网络解密

数据科学与机器学习 — 神经网络(第 01 部分):前馈神经网络解密

许多人喜欢它们,但却只有少数人理解神经网络背后的整个操作。 在本文中,我尝试用淳朴的语言来解释前馈多层感知,解密其封闭大门背后的一切。
preview
开发多币种 EA 交易(第 1 部分):多种交易策略的协作

开发多币种 EA 交易(第 1 部分):多种交易策略的协作

交易策略是多种多样的,因此,或许可以采用几种策略并行运作,以分散风险,提高交易结果的稳定性。但是,如果每个策略都作为单独的 EA 交易来实现,那么在一个交易账户上管理它们的工作就会变得更加困难。为了解决这个问题,在一个 EA 中实现不同交易策略的操作是合理的。
自动控制系统 (ACS) 环境中的技术分析观点,也即"反向观点"
自动控制系统 (ACS) 环境中的技术分析观点,也即"反向观点"

自动控制系统 (ACS) 环境中的技术分析观点,也即"反向观点"

本文介绍技术分析的另一种观点,此观点基于现代化自动控制理论和技术分析自身的原理。本文是一篇介绍性文章,表述的就是这个理论及其一些实际的应用。
preview
连续前行优化 (第八部分): 程序改进和修复

连续前行优化 (第八部分): 程序改进和修复

根据本系列文章的用户和读者的评论和要求,程序已进行了修改。 本文包含一个自动优化器的新版本。 该版本实现了所需的功能,并提供了其他改进,这些是我运用该程序操作时发现的。
DoEasy 库中的其他类(第六十八部分):图表窗口对象类和图表窗口中的指标对象类
DoEasy 库中的其他类(第六十八部分):图表窗口对象类和图表窗口中的指标对象类

DoEasy 库中的其他类(第六十八部分):图表窗口对象类和图表窗口中的指标对象类

在本文中,我将继续开发图表对象类。 我将添加含有可用指标列表的图表窗口对象列表。
preview
自定义指标(第一部份):在MQL5中逐步开发简单自定义指标的入门指南

自定义指标(第一部份):在MQL5中逐步开发简单自定义指标的入门指南

学习如何使用MQL5创建自定义指标。这篇入门文章将指引您了解创建简单自定义指标的基础知识,并向初次接触这一有趣话题的MQL5程序员展示编写各种自定义指标的方法。
preview
优化结果的可视化评估

优化结果的可视化评估

在本文中,我们将研究如何建立所有优化通测的图形,以及选择最优结果的自定义准则。 我们还将看到如何利用网站上发表的文章和论坛评论,在几乎不了解 MQL5 的情况下创建所需的解决方案。
preview
从头开始开发智能交易系统(第 25 部分):提供系统健壮性(II)

从头开始开发智能交易系统(第 25 部分):提供系统健壮性(II)

在本文中,我们将朝着 EA 的性能迈出最后一步。 为此,请做好长时间阅读的准备。 为了令我们的智能交易系统可靠,我们首先从代码中删除不属于交易系统的所有内容。
我们如何开发MetaTrader 信号服务和群组交易
我们如何开发MetaTrader 信号服务和群组交易

我们如何开发MetaTrader 信号服务和群组交易

我们持续加强信号服务,完善机制,添加新的功能并修复缺陷。2012年的MetaTrader信号服务和当前的MetaTrader信号服务就像两个完全不同的服务。目前,我们正在实施 虚拟主机云服 务,它由一个服务器网络组成用来支持特定版本的MetaTrader客户端。
preview
从头开始开发智能交易系统(第 28 部分):面向未来((III)

从头开始开发智能交易系统(第 28 部分):面向未来((III)

我们的订单系统有一项任务仍然尚未完成,但我们终将把它搞定。 MetaTrader 5 提供了一个允许创建和更正订单参数值的单据系统。 该思路是拥有一个智能系统,可令相同的票据系统更快、更高效。
preview
掌握 MQL5:从入门到精通(第二部分)基本数据类型和变量的使用

掌握 MQL5:从入门到精通(第二部分)基本数据类型和变量的使用

这是初学者系列的延续。本文将介绍如何创建常量和变量、写入日期、颜色和其他有用的数据。我们将学习如何创建枚举,如一周中的天数或线条样式(实线、虚线等)。变量和表达式是编程的基础。它们肯定存在于99%以上的程序中,因此理解它们至关重要。因此,如果你是编程新手,这篇文章会对你非常有用。所需的编程知识水平:非常基础,在我上一篇文章(见开头的链接)的范围内。
preview
神经网络变得轻松(第三十五部分):内在好奇心模块

神经网络变得轻松(第三十五部分):内在好奇心模块

我们继续研究强化学习算法。 到目前为止,我们所研究的所有算法都需要创建一个奖励政策,从而令代理者能够每次从一个系统状态过渡到另一个系统状态的转换中估算其每个动作。 然而,这种方式人为因素相当大。 在实践中,动作和奖励之间存在一些时间滞后。 在本文中,我们将领略一种模型训练算法,该算法可以操控从动作到奖励的各种时间延迟。
preview
构建自动运行的 EA(第 14 部分):自动化(VI)

构建自动运行的 EA(第 14 部分):自动化(VI)

在本文中,我们将把本系列中的所有知识付诸实践。 我们最终将建立一个 100% 自动化和功能性的系统。 但在此之前,我们仍然需要学习最后一个细节。