Статьи об интеграции MetaTrader 5 с помощью языка MQL5

icon

Задачи, которые встают перед трейдером, интересны и, зачастую, требуют нестандартных подходов. Здесь вы найдете статьи, в которых предлагаются самые неожиданные решения для оценки, анализа и обработки ценовых данных и результатов торговли. Подключение баз данных и ICQ, использование OpenCL и  социальных сетей, использование Delphi и C# - всё это затрагивают авторы предлагаемых статей.

Читайте, и вы узнаете, как использовать специализированные математические и нейронные пакеты, а также многое другое. Станьте автором и поделитесь уникальными знаниями с MQL5.community.

Новая статья
последние | лучшие
preview
Популяционные алгоритмы оптимизации: Алгоритм летучих мышей (Bat algorithm - BA)

Популяционные алгоритмы оптимизации: Алгоритм летучих мышей (Bat algorithm - BA)

Сегодня изучим алгоритм летучих мышей (Bat algorithm - BA), который отличается удивительной сходимостью на гладких функциях.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 04): Линейный дискриминантный анализ

Возможности Мастера MQL5, которые вам нужно знать (Часть 04): Линейный дискриминантный анализ

Современный трейдер почти всегда находится в поиске новых идей. Он постоянно пробует новые стратегии, модифицирует их и отбрасывает те, что не оправдали себя. В этой серии статей я постараюсь доказать, что Мастер MQL5 является настоящей опорой трейдера в его поисках.
preview
Популяционные алгоритмы оптимизации: Светлячковый алгоритм (Firefly Algorithm - FA)

Популяционные алгоритмы оптимизации: Светлячковый алгоритм (Firefly Algorithm - FA)

Рассмотрим метод оптимизации "Поиск с помощью светлячкового алгоритма" (FA). Из аутсайдера путем модификации алгоритм превратился в настоящего лидера рейтинговой таблицы.
preview
Работа с матрицами и векторами в MQL5

Работа с матрицами и векторами в MQL5

Для решения математических задач в MQL5 были добавлены матрицы и векторы. Новые типы имеют встроенные методы для написания краткого и понятного кода, который близок к математической записи. Массивы — это хорошо, но матрицы во многих случаях лучше.
preview
Нейросети — это просто (Часть 26): Обучение с подкреплением

Нейросети — это просто (Часть 26): Обучение с подкреплением

Продолжаем изучение методов машинного обучения. Данной статьей мы начинаем еще одну большую тему "Обучение с подкреплением". Данный подход позволяет моделям выстаивать определенные стратегии для решения поставленных задач. И мы рассчитываем, что это свойство обучения с подкреплением откроет перед нами новые горизонты построения торговых стратегий.
preview
Нейросети — это просто (Часть 25): Практикум Transfer Learning

Нейросети — это просто (Часть 25): Практикум Transfer Learning

В последних двух статьях мы создали инструмент, позволяющий создавать и редактировать модели нейронных сетей. И теперь пришло время оценить потенциальные возможности использования технологии Transfer Learning на практических примерах.
Популяционные алгоритмы оптимизации
Популяционные алгоритмы оптимизации

Популяционные алгоритмы оптимизации

Вводная статья об алгоритмах оптимизации (АО). Классификация. В статье предпринята попытка создать тестовый стенд (набор функций), который послужит в дальнейшем для сравнения АО между собой, и, даже, возможно, выявления самого универсального алгоритма из всех широко известных.
preview
Нейросети — это просто (Часть 24): Совершенствуем инструмент для Transfer Learning

Нейросети — это просто (Часть 24): Совершенствуем инструмент для Transfer Learning

В прошлой статье мы создали инструмент для создания и редактирования архитектуры нейронных сетей. И сегодня я хочу Вам предложить продолжить работу над этим инструментом. Чтобы сделать его более дружелюбным к пользователю. В чем-то это шаг в сторону от нашей темы. Но согласитесь, организация рабочего пространства играет не последнюю роль в достижении результата.
preview
Нейросети — это просто (Часть 23): Создаём инструмент для Transfer Learning

Нейросети — это просто (Часть 23): Создаём инструмент для Transfer Learning

В данной серии статей мы уже не один раз упоминали о Transfer Learning. Но дальше упоминаний пока дело не шло. Я предлагаю заполнить этот пробел и посмотреть поближе на Transfer Learning.
preview
Нейросети — это просто (Часть 22): Обучение без учителя рекуррентных моделей

Нейросети — это просто (Часть 22): Обучение без учителя рекуррентных моделей

Мы продолжаем рассмотрение алгоритмов обучения без учителя. И сейчас я предлагаю обсудить особенности использования автоэнкодеров для обучения рекуррентных моделей.
preview
Разработка торгового советника с нуля (Часть 17): Доступ к данным в Интернете (III)

Разработка торгового советника с нуля (Часть 17): Доступ к данным в Интернете (III)

В этой статье мы продолжим с просмотром того, как получать данные из Интернета для их использования в советнике. Давайте приступим к работе, а точнее к кодированию альтернативной системы.
preview
Разработка торгового советника с нуля (Часть 16): Доступ к данным в Интернете (II)

Разработка торгового советника с нуля (Часть 16): Доступ к данным в Интернете (II)

Знание того, как вводить данные из Web в советник, не так очевидно, вернее, не так просто, чтобы это можно было сделать без понимания всех возможностей, которые есть в MetaTrader 5.
preview
Разработка торгового советника с нуля (Часть 15): Доступ к данным в Интернете (I)

Разработка торгового советника с нуля (Часть 15): Доступ к данным в Интернете (I)

Как получить доступ к данным в Интернете в MetaTrader 5. В Интернете у нас есть различные сайты и места, с огромным количеством информации, доступной для тех, кто знает, где искать и как лучше всего использовать эту информацию.
preview
Метамодели в машинном обучении и трейдинге: Оригинальный тайминг торговых приказов

Метамодели в машинном обучении и трейдинге: Оригинальный тайминг торговых приказов

Метамодели в машинном обучении: Автоматическое создание торговых систем практически без участия человека — Модель сама принимает решение как торговать и когда торговать.
preview
WebSocket для MetaTrader 5 — Использование Windows API

WebSocket для MetaTrader 5 — Использование Windows API

В этой статье мы используем WinHttp.dll, чтобы создать клиент WebSocket для MetaTrader 5-программ. В конечном итоге клиент должен быть выполнен в виде класса и протестирован во взаимодействии с WebSocket API от Binary.com.
preview
Уроки по DirectX (Часть I): Рисуем первый треугольник

Уроки по DirectX (Часть I): Рисуем первый треугольник

Это вводная статья по DirectX, которая описывает особенности работы с API. Помогает разобраться с порядком инициализации его компонентов. Приводит пример написания скрипта на MQL, выводящего треугольник с помощью DirectX.
Веб-проекты (Часть III): Система авторизации Laravel/MetaTrader 5
Веб-проекты (Часть III): Система авторизации Laravel/MetaTrader 5

Веб-проекты (Часть III): Система авторизации Laravel/MetaTrader 5

В этот раз создадим систему авторизации в торговом терминале MetaTrader 5 на чистом MQL5. Пользователи приложения смогут зарегистрироваться в системе, предоставив свои учётные данные, чтобы впоследствии можно было авторизоваться и получить доступ, к каким-нибудь данным, которые хранятся в серверной части приложения.
Веб-проекты (Часть II): Система авторизации Laravel/Nuxt
Веб-проекты (Часть II): Система авторизации Laravel/Nuxt

Веб-проекты (Часть II): Система авторизации Laravel/Nuxt

В этой статье создадим систему авторизации через браузерное приложение и через торговый терминал MetaTrader 5. Можно будет зарегистрироваться в системе, указав свои учётные данные.
Веб-проекты (Часть I): Создание веб-приложения в схеме Laravel/Nuxt/MetaTrader 5
Веб-проекты (Часть I): Создание веб-приложения в схеме Laravel/Nuxt/MetaTrader 5

Веб-проекты (Часть I): Создание веб-приложения в схеме Laravel/Nuxt/MetaTrader 5

Разработчики MetaTrader 5 предоставили MQL-сообществу множество технологических решений, что даёт возможность реализовывать сложные программные комплексы, схемы которых могут выходить даже за рамки «песочницы» локального компьютера.
preview
Использование AutoIt с MQL5

Использование AutoIt с MQL5

В статье рассматривается создание скриптов для терминала MetraTrader 5 путем интеграции MQL5 с AutoIt. Я покажу, как автоматизировать различные задачи с помощью пользовательского интерфейса терминала, а также представлю класс, использующий библиотеку AutoItX.
preview
Многослойный перцептрон и алгоритм обратного распространения ошибки (Часть II): Реализация на Python и интеграция с MQL5

Многослойный перцептрон и алгоритм обратного распространения ошибки (Часть II): Реализация на Python и интеграция с MQL5

Уже доступен пакет Python для разработки интеграции с MQL, что открывает двери для многих возможностей, таких как изучение данных и создание и использование моделей машинного обучения. Эта встроенная интеграция MQL5 в Python открывает для нас много возможностей, которые позволяют построить от простой линейной регрессии до моделей глубокого обучения. Давайте разберемся, как установить и подготовить среду разработки и использовать некоторые библиотеки машинного обучения.
preview
Советы профессионального программиста (Часть I): Хранение, отладка и компиляция кодов. Работа с проектами и логами

Советы профессионального программиста (Часть I): Хранение, отладка и компиляция кодов. Работа с проектами и логами

Советы профессионального программиста о методах, приемах и вспомогательных инструментах, облегчающих программирование.
preview
Брутфорс-подход к поиску закономерностей (Часть IV): Минимальная функциональность

Брутфорс-подход к поиску закономерностей (Часть IV): Минимальная функциональность

В данной статье я покажу улучшенную версию брутфорса, основанную на целях поставленных в предыдущей статье, и постараюсь наиболее широко осветить эту тему, используя советники и настройки добытые с помощью данного метода. Также дам сообществу попробовать новую версию программы.
preview
Машинное обучение в торговых системах на сетке и мартингейле. Есть ли рыба?

Машинное обучение в торговых системах на сетке и мартингейле. Есть ли рыба?

Данная статья познакомит читателя с техникой машинного обучения для торговли сеткой и мартингейлом. К моему удивлению, такой подход по каким-то причинам совершенно не затронут в глобальной сети. Прочитав статью, вы сможете создавать своих собственных ботов.
preview
Практическое применение нейросетей в трейдинге (Часть 2). Компьютерное зрение

Практическое применение нейросетей в трейдинге (Часть 2). Компьютерное зрение

Применение компьютерного зрения позволит обучать нейронные сети на визуальном представлении ценового графика и индикаторов. Данный метод позволит нам более свободно оперировать всем комплексом технических индикаторов, так как не требует их цифровой подачи в нейронную сеть.
preview
Как заработать $1 000 000 в алготрейдинге? На сервисах MQL5.com!

Как заработать $1 000 000 в алготрейдинге? На сервисах MQL5.com!

Каждый трейдер приходит на рынок с целью заработать свой первый миллион долларов. Как это сделать без большого риска и не имея стартового капитала? MQL5 сервисы дают такие возможности разработчикам и трейдерам в любой стране мира.
preview
WebSocket для MetaTrader 5

WebSocket для MetaTrader 5

До появления сетевых функций в обновленном MQL5 API, приложения MetaTrader были ограничены в возможности подключаться и взаимодействовать с сервисами на основе протокола WebSocket. Сейчас ситуация изменилась. В этой статье мы рассмотрим реализацию библиотеки WebSocket на чистом MQL5. Будут представлены краткое описание протокола WebSocket и пошаговое руководство по использованию полученной библиотеки.
preview
Брутфорс-подход к поиску закономерностей (Часть III): Новые горизонты

Брутфорс-подход к поиску закономерностей (Часть III): Новые горизонты

Данная статья продолжает тему брутфорса, привнося в алгоритм моей программы новые возможности по анализу рынка, тем самым ускоряя скорость анализа и качество итоговых результатов, что обеспечивает максимально качественный взгляд на глобальные закономерности в рамках данного подхода.
preview
Поиск сезонных закономерностей на валютном рынке с помощью алгоритма CatBoost

Поиск сезонных закономерностей на валютном рынке с помощью алгоритма CatBoost

В статье показана возможность создания моделей машинного обучения с временными фильтрами и раскрыта эффективность такого подхода. Теперь можно исключить человеческий фактор, просто сказав модели: "Хочу, чтобы ты торговала в определенный час определенного дня недели". А поиск закономерностей возложить на плечи алгоритма.
preview
Нейросети — это просто (Часть 9): Документируем проделанную работу

Нейросети — это просто (Часть 9): Документируем проделанную работу

Мы уже проделали довольно большой путь, и код нашей библиотеке сильно разрастается. Становится сложно отслеживать все связи и зависимости. И конечно, перед продолжением развития проекта нам нужно задокументировать уже проделанную работу и актуализировать документацию на каждом последующем шаге. Правильно подготовленная документация поможет нам увидеть целостность нашей работы.
preview
Градиентный бустинг в задачах трансдуктивного и активного машинного обучения

Градиентный бустинг в задачах трансдуктивного и активного машинного обучения

В данной статье вы познакомитесь с методами активного машинного обучения на реальных данных, узнаете какие плюсы и минусы они имеют. Возможно, эти методы займут свое место в вашем арсенале моделей машинного обучения. Термин трансдукции был введен Владимиром Наумовичем Вапником, изобретателем машины опорных векторов или SVM (support vector machine).
preview
Брутфорс-подход к поиску закономерностей (Часть II): Погружение

Брутфорс-подход к поиску закономерностей (Часть II): Погружение

В данной статье я продолжу тему брутфорс-подхода. Постараюсь более качественно осветить закономерности с помощью новой улучшенной версии своей программы и постараюсь найти разницу в стабильности используя разные временные отрезки и разные таймфреймы котировок.
preview
Продвинутый ресемплинг и выбор CatBoost моделей брутфорс методом

Продвинутый ресемплинг и выбор CatBoost моделей брутфорс методом

В данной статье описан один из возможных подходов к трансформации данных для улучшения обобщающей способности модели, а также рассмотрен перебор моделей CatBoost и выбор лучшей из них.
preview
Машинное обучение от Яндекс (CatBoost) без изучения Python и R

Машинное обучение от Яндекс (CatBoost) без изучения Python и R

В статье приведен код и описаны основные этапы процесса машинного обучения на конкретном примере. Для получения моделей не потребуется знание таких языков программирования, как Python или R, знание языка MQL5 будут востребованы неглубокие, впрочем, как и в наличии у автора этой статьи, поэтому смею надеяться, что данная статья послужит хорошим руководством для широкого круга заинтересованных лиц, желающих экспериментальным путем оценить возможности машинного обучения и внедрить их в свои разработки.
preview
Градиентный бустинг (CatBoost) в задачах построения торговых систем. Наивный подход

Градиентный бустинг (CatBoost) в задачах построения торговых систем. Наивный подход

Обучение классификатора CatBoost на языке Python и экспорт модели в mql5 формат, а также разбор параметров модели и кастомный тестер стратегий. Для подготовки данных и обучения модели используется язык программирования Python и библиотека MetaTrader5.
preview
Практическое применение нейросетей в трейдинге. Python (Часть I)

Практическое применение нейросетей в трейдинге. Python (Часть I)

В данной статье мы поэтапно разберем вариант реализации торговой системы на основе программирования глубоких нейронных сетей на Python. Для этого мы используем библиотеку машинного обучения TensorFlow, разработанной компанией Google. А для описания нейронных сетей используем библиотеку Keras.
Пишем Twitter-клиент для MetaTrader: Часть 2
Пишем Twitter-клиент для MetaTrader: Часть 2

Пишем Twitter-клиент для MetaTrader: Часть 2

Реализуем Twitter-клиент в виде MQL-класса, позволяющего отправлять твиты с картинками. Подключив всего один автономный include-файл, вы сможете публиковать твиты и выкладывать свои графики и сигналы.
Пишем Twitter-клиент для MetaTrader 4 и MetaTrader 5 без использования DLL
Пишем Twitter-клиент для MetaTrader 4 и MetaTrader 5 без использования DLL

Пишем Twitter-клиент для MetaTrader 4 и MetaTrader 5 без использования DLL

Хотите получать твиты или публиковать свои торговые сигналы в Твиттере? Больше не нужно искать решения — в этой серии статей мы рассмотрим, как работать с Твиттером без использования DLL. Мы вместе реализуем Tweeter API с помощью MQL. В первой статье начнем с возможностей аутентификации и авторизации в с Twitter API.
preview
Параллельная оптимизация методом роя частиц (Particle Swarm Optimization)

Параллельная оптимизация методом роя частиц (Particle Swarm Optimization)

В статье описан способ быстрой оптимизиции методом роя частиц, представлена его реализация на MQL, готовая к применению как в однопоточном режиме внутри эксперта, так и в параллельном многопоточном режиме в качестве надстройки, выполняющейся на локальных агентах тестера.
preview
Непрерывная скользящая оптимизация (Часть 8): Доработка программы и исправление найденных недочетов

Непрерывная скользящая оптимизация (Часть 8): Доработка программы и исправление найденных недочетов

По просьбам пользователей и читателей данного цикла статей, программа была модифицирована и теперь можно сказать, что в текущая статья содержит уже новую версию автооптимизатора. В автооптимизатор были внесены как запрашиваемые, так и новые улучшения, идеи которых пришли в момент корректировки программы.