
Машинное обучение и Data Science (Часть 19): Совершенствуем AI-модели с помощью AdaBoost
Алгоритм AdaBoost используется для повышения производительности моделей искусственного интеллекта. AdaBoost (Adaptive Boosting, адаптивный бустинг) представляет собой сложную методику ансамблевого обучения, которая легко объединяет слабых учащихся, повышая их коллективную способность прогнозирования.

Распознавание паттернов с использованием динамической трансформации временной шкалы в MQL5
В этой статье мы обсудим концепцию динамической трансформации временной шкалы (dynamic time warping) как средства выявления прогностических закономерностей в финансовых временных рядах. Мы рассмотрим, как она работает, а также представим ее реализацию на чистом MQL5.

Оптимизация атмосферными облаками — Atmosphere Clouds Model Optimization (ACMO): Практика
В данной статье мы продолжим погружение в реализацию алгоритма ACMO (Atmospheric Cloud Model Optimization). В частности, обсудим два ключевых аспекта: перемещение облаков в регионы с низким давлением и моделирование процесса дождя, включая инициализацию капель и распределение их между облаками. Мы также разберем другие методы, которые играют важную роль в управлении состоянием облаков и обеспечении их взаимодействия с окружающей средой.

Матричная модель прогнозирования на марковской цепи
Создаем матричную модель прогнозирования на марковской цепи. Что такое марковские цепи, и как можно использовать марковскую цепь для трейдинга на Форекс.

Нейросети — это просто (Часть 90): Частотная интерполяция временных рядов (FITS)
При изучении метода FEDformer мы приоткрыли дверь в частотную область представления временного ряда. В новой статье мы продолжим начатую тему. И рассмотрим метод, позволяющий не только проводить анализ, но и прогнозировать последующие состояния в частной области.

Анализ сентимента (рыночных настроений) и глубокое обучение для торговли советником и тестирование на истории с помощью Python
В этой статье познакомим вас с анализом сентимента и моделями ONNX на языке Python для использования в советнике. Один скрипт запускает обученную модель ONNX из TensorFlow для прогнозов на основе глубокого обучения, а другой извлекает заголовки новостей и дает количественную оценку настроений при помощи ИИ.

Нейросети — это просто (Часть 76): Изучение разнообразных режимов взаимодействия (Multi-future Transformer)
В данной статье мы продолжаем тему прогнозирования предстоящего ценового движения. И предлагаю Вам познакомиться с архитектурой Multi-future Transformer. Основная идея которого заключается в разложении мультимодального распределение будущего на несколько унимодальных распределений, что позволяет эффективно моделировать разнообразные модели взаимодействия между агентами на сцене.

Прогнозирование валютных курсов с использованием классических методов машинного обучения: Логит и Пробит модели
Предпринята попытка построить торговый эксперт для предсказания котировок валютных курсов. За основу алгоритма взяты классические модели классификации — логистическая и пробит регрессия. В качестве фильтра торговых сигналов используется критерий отношения правдоподобия.

DoEasy. Элементы управления (Часть 10): WinForms-объекты — оживляем интерфейс
Настала пора заняться оживлением графического интерфейса — делать функционал для взаимодействия объектов с пользователем и другими объектами. И для того, чтобы более сложные объекты могли правильно работать, нам уже необходим функционал взаимодействия объектов друг с другом и с пользователем.

Переосмысливаем классические стратегии: Нефть
В этой статье мы пересмотрим классическую стратегию торговли сырой нефтью с целью ее усовершенствования за счет использования алгоритмов машинного обучения с учителем. Мы построим модель наименьших квадратов для прогнозирования будущих цен на нефть марки Brent на основе разницы между ценами на нефть марки Brent и WTI. Наша цель — найти опережающий индикатор будущих изменений цен на нефть марки Brent.

Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (Окончание)
Продолжаем рассмотрение гибридной торговой системы StockFormer, которая объединяет предиктивное кодирование и алгоритмы обучения с подкреплением для анализа финансовых временных рядов. Основой системы служат три ветви Transformer с механизмом Diversified Multi-Head Attention (DMH-Attn), позволяющим выявлять сложные паттерны и взаимосвязи между активами. Ранее мы познакомились с теоретическими аспектами фреймворка и реализовали механизмы DMH-Attn, а сегодня поговорим об архитектуре моделей и их обучении.

DoEasy. Элементы управления (Часть 16): WinForms-объект TabControl — несколько рядов заголовков вкладок, режим растягивания заголовков под размеры контейнера
В статье продолжим разработку элемента управления TabControl, и реализуем расположение заголовков вкладок со всех четырёх сторон элемента для всех режимов задания размера заголовков: "Normal", "Fixed" и "Fill To Right".

Метод группового учета аргументов: реализация многослойного итерационного алгоритма на MQL5
В этой статье мы описываем реализацию Многослойного итерационного алгоритма как метода группового учета аргументов на языке MQL5.

Разработка системы репликации - Моделирование рынка (Часть 22): ФОРЕКС (III)
Хотя это уже третья статья об этом, я должен объяснить для тех, кто еще не понял разницу между фондовым рынком и валютным рынком (ФОРЕКС): большая разница заключается в том, что в ФОРЕКС не существует, точнее, нам не дают информацию о некоторых моментах, которые действительно происходили в ходе торговли.

Нейросети в трейдинге: Модели с использованием вейвлет-преобразования и многозадачного внимания (Окончание)
В предыдущей статье мы рассмотрели теоретические основы и приступили к реализации подходов фреймворка Multitask-Stockformer, объединяющего вейвлет-преобразование и многозадачную модель Self-Attention. Продолжаем реализацию алгоритмов указанного фреймворка и оценим их эффективность на реальных исторических данных.

Разработка системы репликации (Часть 57): Анализируем тестовый сервис
И заключительный момент: хотя он и не включен в эту статью, я объясню код сервиса, который будет использоваться в следующей, поскольку мы будем использовать этот же код в качестве трамплина для того, что мы на самом деле разрабатываем. Так что, наберитесь терпения и ждите следующей статьи, ведь с каждым днем все становится еще интереснее.

Популяционные алгоритмы оптимизации: Алгоритм поиска системой зарядов (Charged System Search, CSS)
В этой статье рассмотрим ещё один алгоритм оптимизации, инспирированный неживой природой - алгоритм поиска системой зарядов (CSS). Цель этой статьи - представить новый алгоритм оптимизации, основанный на принципах физики и механики.

Введение в MQL5 (Часть 8): Руководство для начинающих по созданию советников (II)
В этой статье рассматриваются частые вопросы, которые начинающие программисты задают на форуме MQL5. Также демонстрируются практические решения. Мы научимся совершать основные действия: покупку и продажу, получение цен свечей, а также управление торговыми аспектами, включая торговые лимиты, периоды и пороговые значения прибыли/убытка. В статье представлены пошаговые инструкции, которые помогут вам лучше понять и реализовать обсуждаемые концепции на MQL5.

Нейросети в трейдинге: Комплексный метод прогнозирования траекторий (Traj-LLM)
В данной статье я хочу познакомить вас с одним интересным методом прогнозирования траекторий, разработанным для решения задач в области автономного движения транспортных средств. Авторы метода объединили в нем лучшие элементы различных архитектурных решений.

Машинное обучение и Data Science (Часть 27): Сверточные нейросети (CNN) в торговых роботах для MetaTrader 5
Сверточные нейронные сети (CNN) используются для обнаружения закономерностей в изображениях и видео. При этом их применение намного шире. В этой статье мы рассмотрим применимость сверточных нейросетей для выявления ценных закономерностей на финансовых рынках и генерации торговых сигналов для торговых роботов в MetaTrader 5. Поговорим о том, как можно использовать этот метод глубокого машинного обучения для принятия обоснованных торговых решений.

Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Тестирование и результаты
В этой статье мы продолжим изучение алгоритма искусственного пчелиного улья ABHA, углубляясь в написание кода и рассматривая оставшиеся методы. Напомним, что каждая пчела в модели представлена как индивидуальный агент, чье поведение зависит от внутренней и внешней информации, а также мотивационного состояния. Мы проведем тестирование алгоритма на различных функциях и подведем итоги, представив результаты в рейтинговой таблице.

Квантовые вычисления и трейдинг: Новый взгляд на прогнозы цен
В статье рассматривается инновационный подход к прогнозированию движения цен на финансовых рынках с использованием квантовых вычислений. Основное внимание уделяется применению алгоритма квантовой оценки фазы (QPE) для поиска продобразов ценовых паттернов, что позволяет значительно ускорить процесс анализа рыночных данных.

Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть I)
Мы разобьем основной код MQL5 на отдельные фрагменты, чтобы проиллюстрировать интеграцию Telegram и WhatsApp для получения уведомлений о сигналах от индикатора Trend Constraint, который мы создаем в этой серии статей. Статья будет полезна трейдерам, а также начинающим и опытным разработчикам. Сначала мы рассмотрим настройку уведомлений в MetaTrader 5 и пользу их подключения для пользователя. На основе этого разработчики смогут отметить для себя определенные моменты для дальнейшего применения в своих системах.

Теория категорий в MQL5 (Часть 16): Функторы с многослойными перцептронами
Мы продолжаем рассматривать функторы и то, как их можно реализовать с помощью искусственных нейронных сетей. Мы временно оставим подход, который включал в себя прогнозирование волатильности, и попытаемся реализовать собственный класс сигналов для установки сигналов входа и выхода из позиции.

Как разработать агент обучения с подкреплением на MQL5 с интеграцией RestAPI (Часть 3): Создание автоматических ходов и тестовых скриптов на MQL5
В этой статье рассматривается реализация автоматических ходов в игре "Крестики-нолики" на языке Python, интегрированная с функциями MQL5 и модульными тестами. Цель - улучшить интерактивность игры и обеспечить надежность системы с помощью тестирования на MQL5. Изложение охватывает разработку игровой логики, интеграцию и практическое тестирование, а завершается созданием динамической игровой среды и надежной интегрированной системы.

Скальпинг по потоку ордеров (Order Flow Scalping) с MQL5
Данный советник для MetaTrader 5 реализует стратегию Scalping OrderFlow (стратегия скальпирования потока ордеров) с расширенным управлением рисками. В нем используется множество технических индикаторов для определения торговых возможностей на основе дисбалансов в потоке ордеров. Бэк-тестирование показывает потенциальную прибыльность, но подчеркивает необходимость дальнейшей оптимизации, особенно в области управления рисками и соотношения результатов торговли. Он подходит для опытных трейдеров и требует тщательного тестирования и понимания перед практическим применением.

Угловой анализ ценовых движений: гибридная модель прогнозирования финансовых рынков
Что такое угловой анализ финансовых рынков? Как использовать углы движения цен и машинное обучение для точного прогнозирования с точностью 67? Как совместить регрессионную и классификационную модель с угловыми признаками и получить работающий алгоритм? Причем тут Ганн? Почему углы движения цен являются хорошим признаком для машинного обучения?

Нейронная сеть на практике: Зарисовка нейрона
В этой статье мы построим базовый нейрон. И хотя с виду он кажется простым, а многие могут посчитать этот код совершенно тривиальным и бессмысленным, я хочу, чтобы вы получили удовольствие, изучая этот простой набросок нейрона. Не бойтесь изменять код, чтобы лучше его понять.

Добавляем пользовательскую LLM в торгового робота (Часть 2): Пример развертывания среды
Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.

Построение модели для ограничения диапазона сигналов по тренду (Часть 3): Обнаружение изменений трендов при использовании системы
В этой статье рассматривается, как экономические новости, поведение инвесторов и различные факторы могут влиять на развороты рыночных трендов. Статья включает видео с пояснениями и внедряет MQL5-код в программу для обнаружения разворотов тренда, оповещения и принятия соответствующих мер в зависимости от рыночных условий.

Разработка интерактивного графического пользовательского интерфейса на MQL5 (Часть 1): Создание панели
В статье рассматриваются основные этапы создания и реализации панели графического пользовательского интерфейса (Graphical User Interface, GUI) с помощью языка MetaQuotes Language 5 (MQL5). Пользовательские панели утилит повышают качество взаимодействия с системой при торговле, упрощая типовые задачи и визуализируя важную торговую информацию. Создавая пользовательские панели, трейдеры могут оптимизировать рабочий процесс и сэкономить время при торговых операциях.

Разработка системы репликации - Моделирование рынка (Часть 11): Появление СИМУЛЯТОРА (I)
Для того, чтобы использовать данные, формирующие бары, мы должны отказаться от репликации и заняться разработкой симулятора. Мы будем использовать 1-минутные бары именно потому, что они предлагают минимальный уровень сложности.


DoEasy. Элементы управления (Часть 32): горизонтальный "ScrollBar", прокрутка колесиком мышки
В статье завершим разработку функционала объекта-горизонтальной полосы прокрутки. Сделаем возможность прокрутки содержимого контейнера перемещением ползунка полосы прокрутки и вращением колёсика мышки. Также внесём дополнения в библиотеку с учётом появившейся в терминале новой политики исполнения ордеров и новых кодов ошибок времени выполнения в MQL5.

Популяционные алгоритмы оптимизации: Гибридный алгоритм оптимизации бактериального поиска с генетическим алгоритмом (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)
В статье представлен новый подход к решению оптимизационных задач, путём объединения идей алгоритмов оптимизации бактериального поиска пищи (BFO) и приёмов, используемых в генетическом алгоритме (GA), в гибридный алгоритм BFO-GA. Он использует роение бактерий для глобального поиска оптимального решения и генетические операторы для уточнения локальных оптимумов. В отличие от оригинального BFO бактерии теперь могут мутировать и наследовать гены.

DoEasy. Элементы управления (Часть 6): Элемент управления "Панель", автоизменение размеров контейнера под внутреннее содержимое
В статье продолжим работу над WinForms-объектом "Панель" и реализуем автоизменение его размеров под общие размеры Dock-объектов, расположенных внутри панели. Кроме того добавим новые свойства в объект библиотеки "Символ".

Теория категорий в MQL5 (Часть 17): Функторы и моноиды
Это последняя статья серии, посвященная функторам. В ней мы вновь рассматриваем моноиды как категорию. Моноиды, которые мы уже представили в этой серии, используются здесь для помощи в определении размера позиции вместе с многослойными перцептронами.

Нестационарные процессы и ложная регрессия
Статья призвана продемонстрировать факт появления ложной регрессии при попытках применить регрессионный анализ к нестационарным процессам с помощью моделирования по методу Монте-Карло.

Советник на базе универсального аппроксиматора MLP
В статье представлен простой и доступный способ использования нейронной сети в торговом советнике, который не требует глубоких знаний в машинном обучении. Метод исключает нормализацию целевой функции и устраняет проблемы "взрыва весов" и "ступора сети", предлагая интуитивное обучение и наглядный контроль результатов.

Разметка данных в анализе временных рядов (Часть 5):Применение и тестирование советника с помощью Socket
В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!

Советник на базе универсального аппроксиматора MLP
В статье представлен простой и доступный способ использования нейронной сети в торговом советнике, который не требует глубоких знаний в машинном обучении. Метод исключает нормализацию целевой функции и устраняет проблемы "взрыва весов" и "ступора сети", предлагая интуитивное обучение и наглядный контроль результатов.