Оборачиваем ONNX-модели в классы
Объектно-ориентированное программирование позволяет создавать более компактный код, который легко читать и модифицировать. Представляем пример для трёх ONNX-моделей.
DoEasy. Элементы управления (Часть 7): Элемент управления "Текстовая метка"
В статье создадим класс объекта элемента управления WinForms "Текстовая метка". Такой объект будет иметь возможность позиционирования в любом месте своего контейнера, а его собственный функционал будет повторять некоторый функционал текстовой метки MS Visual Studio — мы сможем задать для выводимого текста параметры шрифта.
Построение модели для ограничения диапазона сигналов по тренду (Часть 1): Для советников и технических индикаторов
Статья рассчитана на начинающих и профессиональных разработчиков MQL5. Она предоставляет фрагмент кода для определения индикаторов, генерирующих сигналы, и их ограничения трендами на более старших таймфреймах. Таким образом, трейдеры могут улучшить свои стратегии, включив в них более широкую перспективу рынка, что приведет к получению потенциально более надежных торговых сигналов.
Нейросети в трейдинге: Безмасочный подход к прогнозированию ценового движения
В данной статье предлагаем познакомиться с методом Mask-Attention-Free Transformer (MAFT) и его применение в области трейдинга. В отличие от традиционных Transformer, требующих маскирования данных при обработке последовательностей, MAFT оптимизирует процесс внимания, устраняя необходимость в маскировании, что значительно повышает вычислительную эффективность.
Как начать работу с MQL5 Algo Forge
Представляем MQL5 Algo Forge — специальный портал для разработчиков торговых алгоритмов. Он объединяет возможности Git с удобным интерфейсом для ведения и организации проектов в рамках экосистемы MQL5. Здесь вы можете подписываться на интересных авторов, создавать команды и вести совместные проекты по алготрейдингу.
Нестационарные процессы и ложная регрессия
Статья призвана продемонстрировать факт появления ложной регрессии при попытках применить регрессионный анализ к нестационарным процессам с помощью моделирования по методу Монте-Карло.
Разработка торгового советника с нуля (Часть 14): Добавляем Volume at Price (II)
Сегодня мы добавим несколько ресурсов в наш советник. Эта интересная статья может натолкнуть вас на новые идеи и методы представления информации и в то же время исправить мелкие недочеты в ваших проектах.
Тип рисования DRAW_ARROW в мультисимвольных мультипериодных индикаторах
В статье рассмотрим рисование стрелочных мультисимвольных мультипериодных индикаторов. Доработаем методы класса для корректного отображения стрелок, отображающих данные стрелочных индикаторов, рассчитанных на символе/периоде, не соответствующих символу/периоду текущего графика.
DoEasy. Элементы управления (Часть 13): Оптимизация взаимодействия WinForms-объектов с мышкой, начало разработки WinForms-объекта TabControl
В статье исправим и оптимизируем обработку внешнего вида WinForms-объектов после увода курсора мышки с объекта и начнём разработку WinForms-объекта TabControl.
Разработка показателя качества советников
В этой статье мы объясним, как разработать показатель качества, который ваш советник сможет отображать в тестере стратегии. Мы познакомимся с двумя известными методами расчета (Ван Тарп и Санни Харрис).
Нейросети в трейдинге: Агент с многоуровневой памятью (Окончание)
Продолжаем начатую работу по созданию фреймворка FinMem, который использует подходы многоуровневой памяти, имитирующие когнитивные процессы человека. Это позволяет модели не только эффективно обрабатывать сложные финансовые данные, но и адаптироваться к новым сигналам, значительно повышая точность и результативность инвестиционных решений в условиях динамично изменяющихся рынков.
Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть I)
Мы разобьем основной код MQL5 на отдельные фрагменты, чтобы проиллюстрировать интеграцию Telegram и WhatsApp для получения уведомлений о сигналах от индикатора Trend Constraint, который мы создаем в этой серии статей. Статья будет полезна трейдерам, а также начинающим и опытным разработчикам. Сначала мы рассмотрим настройку уведомлений в MetaTrader 5 и пользу их подключения для пользователя. На основе этого разработчики смогут отметить для себя определенные моменты для дальнейшего применения в своих системах.
Балансировка риска при одновременной торговле нескольких торговых инструментов
Данная статья позволит новичку с нуля написать реализацию скрипта для балансировки рисков при одновременной торговле нескольких торговых инструментов, а опытным пользователям возможно даст новые идеи для реализации своих решений в части предложенных вариантов в данной статье.
Разрабатываем мультивалютный советник (Часть 17): Дальнейшая подготовка к реальной торговле
Сейчас наш советник использует базу данных для получения строк инициализации одиночных экземпляров торговых стратегий. Однако база данных является достаточно объёмной и содержит много информации, ненужной при реальной работе советника. Попробуем обеспечить работоспособность советника без обязательного подключения к базе данных.
Нейросети — это просто (Часть 56): Использование ядерной нормы для стимулирования исследования
Исследование окружающей среды в задачах обучения с подкреплением является актуальной проблемой. Ранее мы уже рассматривали некоторые подходы. И сегодня я предлагаю познакомиться с ещё одним методом, основанным на максимизации ядерной нормы. Он позволяет агентам выделять состояния среды с высокой степенью новизны и разнообразия.
Как разработать агент обучения с подкреплением на MQL5 с интеграцией RestAPI (Часть 1): Как использовать RestAPI в MQL5
В этой статье мы расскажем о важности интерфейсов программирования API для взаимодействия между различными приложениями и программными системами. В ней подчеркивается роль API в упрощении взаимодействия между приложениями, позволяя им эффективно обмениваться данными и функциональными возможностями.
Мониторинг торговли с помощью Push-уведомлений — пример сервиса в MetaTrader 5
В статье рассмотрим создание программы сервиса для отправки уведомлений на смартфон о результатах торговли. В рамках статьи научимся работать со списками объектов Стандартной Библиотеки для организации выборки объектов по требуемым свойствам.
Советник на базе универсального аппроксиматора MLP
В статье представлен простой и доступный способ использования нейронной сети в торговом советнике, который не требует глубоких знаний в машинном обучении. Метод исключает нормализацию целевой функции и устраняет проблемы "взрыва весов" и "ступора сети", предлагая интуитивное обучение и наглядный контроль результатов.
Добавляем пользовательскую LLM в торгового робота (Часть 2): Пример развертывания среды
Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
Нейросети — это просто (Часть 92): Адаптивное прогнозирование в частотной и временной областях
Авторы метода FreDF экспериментально подтвердили преимущество комбинированного прогнозирования в частотной и временной областях. Однако применение весового гиперпараметра не является оптимальным для нестационарных временных рядов. В данной статье я предлагаю познакомиться с методом адаптивного сочетания прогнозов в частотной и временной областях.
Нейросети в трейдинге: Оптимизация LSTM для целей прогнозирования многомерных временных рядов (Окончание)
Мы продолжаем реализацию фреймворка DA-CG-LSTM, который предлагает инновационные методы анализа и прогнозирования временных рядов. Использование CG-LSTM и двойного внимания позволяет более точно выявлять как долгосрочные, так и краткосрочные зависимости в данных, что особенно полезно для работы с финансовыми рынками.
Полиномиальные модели в трейдинге
Эта статья посвящена ортогональным многочленам. Их применение может стать основой для более точного и эффективного анализа рыночной информации, благодаря чему, трейдер сможет принимать более обоснованные решения.
DoEasy. Элементы управления (Часть 25): WinForms-объект "Tooltip"
В статье начнём разработку элемента управления Tooltip ("всплывающая подсказка") и начнём создание новых графических примитивов для библиотеки. Естественно, не у каждого элемента есть всплывающая подсказка, но возможность её задать для него есть у каждого графического объекта.
Нейросети — это просто (Часть 91): Прогнозирование в частотной области (FreDF)
Мы продолжаем рассмотрение темы анализ и прогнозирования временных рядов в частотной области. И в данной статье мы познакомимся с новым методом прогнозирования в частотной области, который может быть добавлен к многим, изученным нами ранее, алгоритмам.
Автоматизация торговли с помощью трендовой стратегии Parabolic SAR на MQL5: Создаем эффективный советник
В этой статье мы автоматизируем торговлю с помощью стратегии Parabolic SAR на MQL5, создав эффективный советник. Советник будет совершать сделки по трендам, определяемым индикатором Parabolic SAR.
Нейросети — это просто (Часть 81): Анализ динамики данных с учетом контекста (CCMR)
В предыдущих работах мы всегда оценивали текущее состояния окружающей среды. При этом динамика изменения показателей, как таковая, всегда оставалась "за кадром". В данной статье я хочу познакомить Вас с алгоритмом, который позволяет оценить непосредственное изменение данных между 2 последовательными состояниями окружающей среды.
Разработка торгового советника с нуля (Часть 27): Навстречу будущему (II)
Давайте перейдем к более полноценной системе ордеров непосредственно на графике. В этой статье я вам покажу способ исправить систему ордеров или, скорее, как сделать её более интуитивно понятной.
Нейросети в трейдинге: Управляемая сегментация (Окончание)
Продолжаем, начатую в предыдущей статье работу, по построению фреймворка RefMask3D средствами MQL5. Данный фреймворк разработан для всестороннего изучения мультимодального взаимодействия и анализа признаков в облаке точек, с последующей идентификацией целевого объекта на основе описания, предоставленного на естественном языке.
Нейросети в трейдинге: Superpoint Transformer (SPFormer)
В данной статья предлагаем познакомиться с методом сегментации 3D-люъектов на основе Superpoint Transformer (SPFormer), который устраняет необходимость в промежуточной агрегации данных. Что ускоряет процесс сегментации и повышает производительность модели.
Популяционные алгоритмы оптимизации: Алгоритм птичьего роя (Bird Swarm Algorithm, BSA)
В статье исследуется алгоритм BSA, основанный на поведении птиц, который вдохновлен коллективным стайным взаимодействием птиц в природе. Различные стратегии поиска индивидов в BSA, включая переключение между поведением в полете, бдительностью и поиском пищи, делают этот алгоритм многоаспектным. Он использует принципы стайного поведения, коммуникации, адаптивности, лидерства и следования птиц для эффективного поиска оптимальных решений.
Анализ сентимента (рыночных настроений) и глубокое обучение для торговли советником и тестирование на истории с помощью Python
В этой статье познакомим вас с анализом сентимента и моделями ONNX на языке Python для использования в советнике. Один скрипт запускает обученную модель ONNX из TensorFlow для прогнозов на основе глубокого обучения, а другой извлекает заголовки новостей и дает количественную оценку настроений при помощи ИИ.
GIT: Но что это?
В этой статье я представлю очень важный инструмент для разработчиков. Если вы не знакомы с GIT, прочтите эту статью, дабы получить представление о том, что он собой представляет, и как его использовать вместе с MQL5.
Угловой анализ ценовых движений: гибридная модель прогнозирования финансовых рынков
Что такое угловой анализ финансовых рынков? Как использовать углы движения цен и машинное обучение для точного прогнозирования с точностью 67? Как совместить регрессионную и классификационную модель с угловыми признаками и получить работающий алгоритм? Причем тут Ганн? Почему углы движения цен являются хорошим признаком для машинного обучения?
Торговый робот на языковой GPT-модели
Статья представляет полную реализацию TimeGPT — специализированной архитектуры на основе Transformer для прогнозирования финансовых временных рядов на платформе MetaTrader 5. Рассмотрена адаптация механизма внимания для финансовых данных, селективная токенизация изменений цены, hardware-aware оптимизации и продвинутые техники обучения. Включены результаты практического тестирования, показавшие точность прогнозов 87% при горизонте 24 бара с временем обучения 15 минут на CPU. Представлен готовый торговый советник с автоматическим переобучением.
Использование JSON Data API в MQL-проектах
Представьте, что вы можете использовать данные, которых нет в MetaTrader. Обычно вы получаете информацию только от индикаторов, основанных на анализе цен и техническом анализе. Теперь представьте, что у вас есть доступ к данным, которые выведут ваши торговые возможности на новый уровень. Вы можете значительно увеличить мощность платформы MetaTrader, если объедините её возможности с результатами работы других программ, методов макроанализа и ультрасовременных инструментов через API. В этой статье мы расскажем, как использовать API, и представим полезные и ценные API-сервисы.
Популяционные алгоритмы оптимизации: Алгоритм оптимизации спиральной динамики (Spiral Dynamics Optimization, SDO)
В статье представлен алгоритм оптимизации, основанный на закономерностях построения спиральных траекторий в природе, таких как раковины моллюсков - алгоритм оптимизации спиральной динамики, SDO. Алгоритм, предложенный авторами, был мной основательно переосмыслен и модифицирован, в статье будет рассмотрено, почему эти изменения были необходимы.
Метод группового учета аргументов: реализация многослойного итерационного алгоритма на MQL5
В этой статье мы описываем реализацию Многослойного итерационного алгоритма как метода группового учета аргументов на языке MQL5.
Индикатор оценки силы и слабости валютных пар на чистом MQL5
Создаем профессиональный индикатор для анализа силы валют на MQL5. Пошаговое руководство научит вас разрабатывать мощный торговый инструмент с визуальной панелью для MetaTrader 5. Вы узнаете, как рассчитывать силу валютных пар по нескольким таймфреймам (H1, H4, D1), реализовывать динамическое обновление данных и создавать удобный пользовательский интерфейс.
Объединяем LLM, CatBoost и квантовые вычисления в единую торговую систему
В статье предлагается синтез новых технологий для преодоления ограничений классических индикаторов в аналитике рыночных данных. Показано, как языковые модели и квантовое кодирование могут выявлять скрытые рыночные паттерны, которые традиционные методики упускают. Эксперимент подтверждает ценность новых технологий и предлагает обновлённую методологию анализа, соответствующую современному уровню вычислительных инноваций.
Нейросети — это просто (Часть 79): Агрегирование запросов в контексте состояния (FAQ)
В предыдущей статье мы познакомились с одним из методом обнаружение объектов на изображении. Однако, обработка статического изображения несколько отличается от работы с динамическими временными рядами, к которым относится и динамика анализируемых нами цен. В данной статье я хочу предложить Вам познакомиться с методом обнаружения объектов на видео, что несколько ближе к решаемой нами задаче.