Integrando o MQL5 com pacotes de processamento de dados (Parte 2): Aprendizado de Máquina e Análise Preditiva
Na nossa série sobre integração do MQL5 com pacotes de processamento de dados, mergulhamos na poderosa combinação de aprendizado de máquina e análise preditiva. Exploraremos como conectar o MQL5 de forma perfeita com bibliotecas populares de aprendizado de máquina, para possibilitar modelos preditivos sofisticados para os mercados financeiros.
Fibonacci no Forex (Parte I): Testando relações entre preço e tempo
Como o mercado se movimenta com base em proporções derivadas dos números de Fibonacci? Essa sequência, em que cada número é a soma dos dois anteriores (1, 1, 2, 3, 5, 8, 13, 21...), não descreve apenas o crescimento da população de coelhos. Vamos considerar a hipótese de Pitágoras de que tudo no mundo obedece a certas proporções numéricas...
Desenvolvendo um sistema de Replay (Parte 64): Dando play no serviço (V)
Neste artigo irei mostrar como corrigir duas falhas que se encontram presentes no código. No entanto tais correções foram explicadas para que você, aspirante a programador, consiga entender que nem sempre as coisas irão acontecer como você havia previsto. Mas isto não é motivo para desespero e sim uma oportunidade de aprendizado. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
Ciência de dados e aprendizado de máquina (Parte 32): Como manter a relevância de modelos de IA com treinamento on-line
No mundo em constante transformação do trading, adaptar-se às mudanças do mercado é simplesmente uma necessidade. Todos os dias surgem novos padrões e tendências, o que torna difícil até mesmo para os modelos mais avançados de aprendizado de máquina manterem sua eficácia diante de condições em mutação. Neste artigo, vamos falar sobre como manter os modelos relevantes e capazes de reagir a novos dados de mercado por meio de reeducação automática.
Simulação de mercado (Parte 20): Iniciando o SQL (III)
Apesar de podermos fazer as coisas com um banco de dados, tendo cerca de 10 ou pouco mais registros. A coisa realmente se torna melhor assimilada, quando usamos um arquivo de banco de dados que contenha mais de 15 mil registros. Ou seja, se você for criar isto manualmente irá ser uma bela de uma tarefa. No entanto, dificilmente você irá encontrar algum banco de dados, mesmo para fins didáticos disponível para download. Mas não precisamos de fato recorrer a este tipo de coisa. Podemos usar o MetaTrader 5, para criar um banco de dados para nos. Neste artigo veremos como fazer isto.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 13): DBSCAN para a Classe de Sinais de Expert
Clustering Espacial Baseado em Densidade para Aplicações com Ruído é uma forma não supervisionada de agrupar dados que dificilmente requer parâmetros de entrada, exceto por apenas 2, o que, quando comparado a outras abordagens como k-means, é uma vantagem. Vamos explorar como isso pode ser construtivo para testar e, eventualmente, negociar com Expert Advisers montados no Wizard.
Anotação de dados na análise de série temporal (Parte 5): Aplicação e teste de um EA usando Socket
Nesta série de artigos, apresentamos vários métodos de anotação de séries temporais que podem criar dados compatíveis com a maioria dos modelos de inteligência artificial (IA). A anotação precisa dos dados pode tornar o modelo de IA treinado mais alinhado com os objetivos e tarefas dos usuários, aumentar a precisão do modelo e até ajudar a alcançar uma melhoria significativa na qualidade!
Ciência de dados e aprendizado de máquina (Parte 18): Comparando a eficácia do TruncatedSVD e NMF no tratamento de dados complexos de mercado
A decomposição em valores singulares truncada (TruncatedSVD) e a fatoração de matriz não negativa (NMF) são métodos de redução de dimensionalidade. Ambos podem ser bastante úteis ao trabalhar com estratégias de negociação baseadas na análise de dados. Neste artigo, analisamos a aplicabilidade desses métodos no processamento de dados complexos de mercado, incluindo suas capacidades de redução de dimensionalidade para otimizar a análise quantitativa nos mercados financeiros.
Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 30): Normalização em Lote no Aprendizado de Máquina
A normalização em lote é um pré-processamento dos dados antes de sua entrada em um algoritmo de aprendizado de máquina, como uma rede neural. Ao aplicá-la, é essencial levar em conta o tipo de ativação que será usado pelo algoritmo. Exploraremos diferentes abordagens para extrair vantagens com um EA construído no Assistente.
Neurônio biológico para previsão de séries temporais financeiras
Estamos construindo um sistema de neurônios biologicamente fiel para prever séries temporais. A introdução de um meio semelhante ao plasma na arquitetura da rede neural criou uma espécie de "inteligência coletiva", onde cada neurônio influencia o funcionamento do sistema não apenas por meio de conexões diretas, mas também por meio de interações eletromagnéticas de longo alcance. Como esse sistema neural modelando o cérebro irá se comportar no mercado?
Critério de homogeneidade de Smirnov como indicador de não-estacionaridade de séries temporais
Este artigo analisa um dos mais conhecidos critérios de homogeneidade não-paramétricos, o critério de Smirnov. São analisados tanto dados modelados quanto cotações reais. É apresentado um exemplo de construção do indicador de não-estacionaridade (iSmirnovDistance).
Implementação do Exponente de Hurst Generalizado e do Teste de Razão de Variância em MQL5
Neste artigo, investigamos como o Exponente de Hurst Generalizado e o Teste de Razão de Variância podem ser utilizados para analisar o comportamento das séries de preços em MQL5.
Simulação de mercado (Parte 17): Sockets (XI)
Implementar a parte que será executada aqui no MetaTrader 5, está longe de ser complicado. Mas existem diversos cuidados e pontos de atenção a serem observados. Isto para que você caro leitor, consiga de fato fazer com que o sistema funcione. Lembre-se de uma coisa: Você não executará um único programa. Você estará na verdade, executando três programas ao mesmo tempo. E é importante que cada um seja implementado e construído de forma que trabalhem e conversem entre si. Isto sem que eles fiquem completamente sem saber o que cada um está querendo ou desejando fazer.
Gestão de capital no trading e programa de contabilidade pessoal do trader com banco de dados
Como um trader deve gerir seu capital? Como um trader e investidor deve controlar despesas, receitas, ativos e passivos? Eu vou apresentar não apenas um programa de controle, mas sim uma ferramenta que pode se tornar seu guia financeiro confiável no turbulento mar do trading.
Importância da qualidade do gerador de números aleatórios no desempenho dos algoritmos de otimização
Neste artigo, analisaremos o gerador de números aleatórios Mersenne Twister e o compararemos com o gerador padrão do MQL5. Veremos como a qualidade dos geradores de números aleatórios influencia os resultados dos algoritmos de otimização.
Portfolio Risk Model using Kelly Criterion and Monte Carlo Simulation
Por décadas, traders vêm utilizando a fórmula do Critério de Kelly para determinar a proporção ideal de capital a ser alocada em um investimento ou aposta, a fim de maximizar o crescimento de longo prazo enquanto minimiza o risco de ruína. No entanto, seguir cegamente o Critério de Kelly utilizando o resultado de um único backtest costuma ser perigoso para traders individuais, pois, na negociação ao vivo, a vantagem de trading diminui com o tempo, e o desempenho passado não é garantia de resultado futuro. Neste artigo, apresentarei uma abordagem realista para aplicar o Critério de Kelly para alocação de risco de um ou mais EAs no MetaTrader 5, incorporando resultados de simulação de Monte Carlo provenientes do Python.
Negociação com spreads no mercado Forex usando o fator de sazonalidade
Este artigo analisa as possibilidades de criação e fornecimento de dados de relatórios sobre o uso do fator de sazonalidade na negociação por meio de spreads no mercado Forex.
Métodos de otimização da biblioteca ALGLIB (Parte I)
Neste artigo, vamos conhecer os métodos de otimização da biblioteca ALGLIB para MQL5. O artigo inclui exemplos simples e visuais de aplicação da ALGLIB para resolver tarefas de otimização, o que tornará o processo de aprendizado dos métodos o mais acessível possível. Analisaremos detalhadamente a integração de algoritmos como BLEIC, L-BFGS e NS, e com base neles resolveremos uma tarefa de teste simples.
Aplicação da teoria dos jogos em algoritmos de trading
Criamos um Expert Advisor adaptativo e autodidata, baseado em aprendizado de máquina DQN com inferência causal multidimensional. Ele negociará com sucesso simultaneamente em sete pares de moedas, enquanto os agentes de diferentes pares trocarão informações entre si.
Negociação de notícias facilitada (parte 5): realizando negociações (II)
Este artigo expandirá a classe de gerenciamento de trades para incluir ordens buy-stop e sell-stop para operar em eventos de notícias e implementará uma restrição de expiração nessas ordens para evitar qualquer negociação durante a noite. Uma função de slippage será incorporada ao expert para tentar prevenir ou minimizar possíveis deslizes que podem ocorrer ao usar ordens stop no trading, especialmente durante eventos de notícias.
Reconhecimento de Padrões Usando Dynamic Time Warping em MQL5
Neste artigo, discutimos o conceito de dynamic time warping como uma forma de identificar padrões preditivos em séries temporais financeiras. Veremos como ele funciona e também apresentaremos sua implementação em MQL5 puro.
Automatizando Estratégias de Negociação com a Estratégia Parabolic SAR em MQL5: Criando um Expert Advisor Eficaz
Neste artigo, vamos automatizar as estratégias de negociação com a Estratégia Parabolic SAR em MQL5: Criando um Expert Advisor Eficaz. O EA realizará negociações com base nas tendências identificadas pelo indicador Parabolic SAR.
Ciência de dados e aprendizado de máquina (Parte 31): Aplicação de modelos CatBoost no trading
Os modelos de inteligência artificial CatBoost ganharam enorme popularidade na comunidade de aprendizado de máquina graças à sua precisão nas previsões, eficiência e resistência a conjuntos de dados fragmentados e complexos. Este artigo trata de como usar esses modelos no mercado Forex.
Aplicação da teoria dos jogos em algoritmos de trading
Criamos um Expert Advisor adaptativo e autodidata, baseado em aprendizado de máquina DQN com inferência causal multidimensional. Ele negociará com sucesso simultaneamente em sete pares de moedas, enquanto os agentes de diferentes pares trocarão informações entre si.
Simulação de mercado: Position View (XVI)
Neste artigo, faremos as modificações necessárias para que o indicador de posição venha a nos apresentar um resultado financeiro. Isto para que o operador, possa ter uma noção do financeiro que estaria sendo obtido em uma posição aberta. Além deste objetivo, aqui trarei para você, um conhecimento que muitos não tem. Mesmo fazendo uso da linguagem MQL5 a muito tempo. Tal conhecimento é justamente como fazer uso de variáveis estáticas, para conseguir um compartilhamento de memória. Isto para evitar declarar uma variável global no código principal.
Simulação de mercado: Iniciando o SQL no MQL5 (IV)
Muitos costuma subutilizar o SQL, ou mesmo não fazer uso dele, devido a uma má compreensão de como ele realmente funciona. Quando pesquisamos dentro de um banco de dados SQL. Não queremos necessariamente saber de uma resposta genérica. Podemos em alguns casos, estar buscando uma resposta bastante objetiva e prática. Se você criar um banco de dados, com uma certa estruturação e modelagem. Poderá colocar, virtualmente qualquer tipo de informação dentro do banco de dados.
Algoritmos de otimização populacional: Resistência a ficar preso em extremos locais (Parte I)
Este artigo apresenta um experimento único que visa examinar o comportamento dos algoritmos de otimização populacional no contexto de sua capacidade de escapar eficientemente de mínimos locais quando a diversidade populacional é baixa e alcançar máximos globais. Trabalhar nessa direção fornecerá uma visão mais aprofundada sobre quais algoritmos específicos podem continuar sua busca com sucesso usando coordenadas definidas pelo usuário como ponto de partida e quais fatores influenciam seu sucesso.
O Método de Agrupamento para Manipulação de Dados: Implementando o Algoritmo Iterativo Multicamadas em MQL5
Neste artigo, descrevemos a implementação do Algoritmo Iterativo Multicamadas do Método de Agrupamento para Manipulação de Dados em MQL5.
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 11): Paredes numéricas
As paredes numéricas (Number Walls) são uma variante do registrador de deslocamento com realimentação linear (Linear Shift Back Registers), que avalia previamente sequências para previsibilidade verificando a convergência. Vamos ver como essas ideias podem ser usadas no MQL5.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 20): Regressão Simbólica
A Regressão Simbólica é uma forma de regressão que começa com poucas ou nenhuma suposição sobre qual seria o modelo subjacente que mapeia os conjuntos de dados em estudo. Embora possa ser implementada por Métodos Bayesianos ou Redes Neurais, analisamos como uma implementação com Algoritmos Genéticos pode ajudar a personalizar uma classe de sinal especialista utilizável no MQL5 Wizard.
Integração do MQL5 com pacotes de processamento de dados (Parte 1): Análise avançada de dados e processamento estatístico
A integração permite um fluxo de trabalho contínuo, no qual os dados financeiros brutos do MQL5 podem ser importados para pacotes de processamento de dados, como o Jupyter Lab, possibilitando análises avançadas, incluindo testes estatísticos.
Informação mútua como critério para seleção progressiva de características
Neste artigo apresentamos a implementação da seleção progressiva de características em MQL5, baseada na informação mútua entre o conjunto ótimo de preditores e a variável alvo.
Análise de Múltiplos Símbolos com Python e MQL5 (Parte II): Análise de Componentes Principais para Otimização de Portfólio
Gerenciar o risco da conta de negociação é um desafio para todos os traders. Como podemos desenvolver aplicações de trading que aprendam dinamicamente modos de risco alto, médio e baixo para vários símbolos no MetaTrader 5? Usando PCA, ganhamos mais controle sobre a variância do portfólio. Vou demonstrar como criar aplicações que aprendem esses três modos de risco a partir de dados de mercado obtidos do MetaTrader 5.
Algoritmo de otimização Royal Flush — Royal Flush Optimization (RFO)
O algoritmo Royal Flush Optimization, criado pelo autor, propõe uma nova forma de abordar problemas de otimização, substituindo a codificação binária clássica dos algoritmos genéticos por uma abordagem setorial, inspirada nos princípios do pôquer. O RFO demonstra como a simplificação de princípios fundamentais pode levar à criação de um método de otimização eficaz e prático. O artigo apresenta uma análise detalhada do algoritmo e os resultados dos testes realizados.
Redes neurais em trading: Conjunto de agentes com uso de mecanismos de atenção (Conclusão)
No artigo anterior, exploramos o framework adaptativo multiagente MASAAT, que utiliza um conjunto de agentes para realizar análise cruzada de séries temporais multimodais em diferentes escalas de representação dos dados. Hoje, concluiremos o trabalho iniciado anteriormente, implementando as abordagens desse framework utilizando MQL5.
Métodos de discretização dos movimentos de preço em Python
Vamos explorar métodos de discretização de preços com Python + MQL5. Neste artigo, compartilho minha experiência prática no desenvolvimento de uma biblioteca em Python que implementa uma variedade de abordagens para formar barras, desde as clássicas Volume e Range bars até métodos mais exóticos como Renko e Kagi. Barras, candles de três linhas rompidas, range bars — qual é a sua estatística? De que outras formas podemos representar os preços de maneira discreta?
Algoritmo da viagem evolutiva no tempo — Time Evolution Travel Algorithm (TETA)
Meu algoritmo original. Neste artigo é apresentado o Algoritmo da Viagem Evolutiva no Tempo (TETA), inspirado no conceito de universos paralelos e fluxos temporais. A ideia central do algoritmo é que, embora a viagem no tempo no sentido convencional seja impossível, podemos escolher uma sequência de eventos que leva a diferentes realidades.
As modificações mais conhecidas do algoritmo de busca cooperativa artificial (Artificial Cooperative Search, ACSm)
Neste artigo, examinamos a evolução do algoritmo ACS: três modificações visando melhorar as características de convergência e eficácia do algoritmo. A transformação de um dos principais algoritmos de otimização. Das modificações de matrizes a abordagens revolucionárias para a formação de populações.
Desenvolvimento de ferramentas para análise do movimento de preços (Parte 2): Script de comentários analíticos
Dando continuidade ao nosso trabalho para simplificar a interação com o comportamento do preço, temos o prazer de apresentar mais uma ferramenta que pode melhorar significativamente sua análise de mercado e ajudar na tomada de decisões bem fundamentadas. Esta ferramenta exibe indicadores técnicos importantes, como os preços do dia anterior, níveis significativos de suporte e resistência, além do volume de negociação, gerando automaticamente dicas visuais no gráfico.
Colmeia artificial de abelhas (ABHA): Testes e resultados
Neste artigo, continuaremos o estudo do algoritmo de colmeia de abelhas ABHA, aprofundando-nos na escrita de código e analisando os métodos restantes. Lembremos que cada abelha no modelo é apresentada como um agente individual, cujo comportamento depende de informações internas e externas, bem como de seu estado motivacional. Realizaremos testes do algoritmo em diferentes funções e apresentaremos os resultados em uma tabela de classificação.