
MQL5でインタラクティブなグラフィカルユーザーインターフェイスを作成する(第2回):コントロールと応答性の追加
ダイナミックな機能でMQL5のGUIパネルを強化することで、ユーザーの取引体験を大幅に向上させることができます。インタラクティブな要素、ホバー効果、リアルタイムのデータ更新を取り入れることで、パネルは現代のトレーダーにとって強力なツールとなるでしょう。


MQL5.comのフリーランスのお仕事 - 開発者のお気に入りの場所
トレーディングシステムの開発者は、エキスパートアドバイザーを必要とするトレーダーに彼らのサービスをマーケティングする必要はありません - 彼らが探してくれるのです。すでに、何千ものトレーダーがMQL5のフリーランス開発者に注文を頼み、MQL5.comにて作業に支払いを行っています。4年間、このサービスは10000以上もの仕事に対して累計3000人のトレーダーが支払えるようにしてきました。そして、トレーダーと開発者の活動は常に拡大しています。


トレードにおけるOLAPの適用(パート1):多次元データのオンライン分析
この記事では、多次元データ(OLAP)のオンライン分析のフレームワークを作成する方法、およびMQLで実装する方法、およびトレード口座ヒストリー処理の例を使用してMetaTrader環境でそのような分析を適用する方法について説明します。

MQL5の圏論(第22回):移動平均の別の見方
この記事では、最も一般的で、おそらく最も理解しやすい指標を1つだけ取り上げて、連載で扱った概念の説明の簡略化を試みます。移動平均です。そうすることで、垂直的自然変換の意義と可能な応用について考えます。

古いトレンドトレーディング戦略の再検討:2つのストキャスティクス、MAとフィボナッチ
古い取引戦略。この記事では、純粋にテクニカルな方法でトレンドをフォローするための戦略の1つを紹介します。これは純粋なテクニカル戦略で、シグナルとターゲットを出すためにいくつかのテクニカル指標とツールを使用します。戦略の構成要素は次の通りです。14期間のストキャスティクス、5期間のストキャスティクス、200期間の移動平均線、フィボナッチ予測ツール(目標設定用)。

MQL5でのもみ合いレンジブレイクアウト戦略に基づくエキスパートアドバイザー(EA)の開発
この記事では、もみ合い期間後の価格ブレイクアウトを活用したエキスパートアドバイザー(EA)の作成手順を説明します。トレーダーは、もみ合いレンジを特定し、ブレイクアウトレベルを設定することで、この戦略に基づいて取引判断を自動化できます。EAは、誤ったブレイクアウトを回避しつつ、明確なエントリポイントとエグジットポイントを提供することを目的としています。

時系列マイニング用データラベル(第3回):ラベルデータの利用例
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、いくつかの時系列のラベル付け方法を紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。

データサイエンスと機械学習(第06回):勾配降下法
勾配降下法は、ニューラルネットワークや多くの機械学習アルゴリズムの訓練において重要な役割を果たします。これは、その印象的な成果にもかかわらず、迅速でインテリジェントなアルゴリズムであり、多くのデータサイエンティストによっていまだに誤解されています。


ソーシャルテクノロジースタートアップの構築 パート1: MetaTrader 5 シグナルをツイートする
今日は MetaTrader 5 ターミナルを Twitter とリンクする方法を学習し、EA のトレードシグナルをツイートできるようにします。RESTful ウェブサービスに基づく PHP にソーシャルディシジョン支援システムを作成します。この考えはコンピュータ援用取引と呼ばれる自動トレーディングの特定の概念からきています。われわれは 別の方法でExpert Advisors によって自動でマーケットに出されるトレードシグナルをフィルターにかける人間のトレーダーの認知能力を欲しています。

パラボリックSARによる取引システムの設計方法を学ぶ
最も人気のある指標を使用して取引システムを設計する方法についての連載を続けます。この記事では、パラボリックSAR指標について詳しく説明し、いくつかの簡単な戦略を使用してMetaTrader 5で使用する取引システムを設計する方法を学びます。


自己適応アルゴリズム(第III部):最適化の放棄
履歴データに基づく最適化を使用してパラメータを選択する場合、真に安定したアルゴリズムを取得することは不可能です。安定したアルゴリズムは、常時、どんな取引商品で作業していても、必要なパラメータを認識している必要があります。予測や推測ではなく、確実に知っているべきです。

MQL5とPythonで自己最適化EAを構築する
この記事では、市況に基づいて取引戦略を自律的に選択変更できるエキスパートアドバイザー(EA)を構築する方法について解説します。マルコフ連鎖の基本を学び、それがアルゴリズムトレードにどのように役立つかを探っていきます。

一からの取引エキスパートアドバイザーの開発(第18部):新規受注システム(I)
今回は新規受注システムの第一弾です。本連載で紹介し始めてから、このEAは、同じチャート上注文システムモデルを維持しながら様々な変更と改良を受けてきました。


価格 Correlationの統計データを基にしたシグナルのフィルタリング
過去の価格変動と将来のトレンドの間に関連はあるのでしょうか?前日の値動き特性が本日繰り返されるのはなぜでしょうか?価格変動予想に統計は有用でしょうか?答えはあり、それはポジティブなものです。もしお疑いならこの記事はそんな方向けです。MQL5のシステムでトレーディングシステム向けの作業フィルター作成方法をお話します。それは価格変動の興味深いパターンを表します。

ニューラルネットワークが簡単に(第83回):「Conformer」Spatio-Temporal Continuous Attention Transformerアルゴリズム
この記事では、天気予報を目的に開発されたConformerアルゴリズムについて紹介します。天気の変動性や予測の難しさは、金融市場の動きとしばしば比較されます。Conformerは、Attentionモデルと常微分方程式の利点を組み合わせた高度な手法です。


DoEasyライブラリでのその他のクラス(第66部): MQL5.comシグナルコレクションクラス
本稿では、シグナルを管理する関数を備えたMQL5.comシグナルサービスのシグナルコレクションクラスを作成します。さらに、DOMの売買取引高の合計を表示するように板情報スナップショットオブジェクトクラスを改善します。

データサイエンスと機械学習(第02回):ロジスティック回帰
データ分類は、アルゴトレーダーとプログラマーにとって非常に重要なものです。この記事では、「はい」と「いいえ」、上と下、買いと売りを識別するのに役立つ可能性のある分類ロジスティックアルゴリズムの1つに焦点を当てます。


MetaTrader5でカスタム MOEX シンボルを作成およびテストする方法
この記事では、MQL5 言語を使用したカスタム交換シンボルの作成について説明します。 特に、人気の Finam ウェブサイトからの為替相場を使用します。 この記事で考えられるもう1つのオプションは、カスタムシンボルの作成に使用するテキストファイルを任意の形式で動作させる方法です。 これにより、任意の財務銘柄とデータソースを操作できるようになります。 カスタムシンボルを作成した後、MetaTrader5 ストラテジーテスターのすべての関数を使用して、交換ツールのトレードアルゴリズムをテストすることができます。


CCIによる取引システムの設計方法を学ぶ
今回は、取引システムの設計方法を学ぶ連載の新しい記事として、CCI(商品チャンネル指数、Commodities Channel Index)を紹介し、その詳細を説明し、この指標に基づいた取引システムの作り方を紹介します。


スワップ(第I部):ロックと合成ポジション
この記事では、スワップ取引手法の古典的な概念を拡張しようとします。私が、この概念に特別な注意を払う価値があり、この概念が研究に絶対的に推奨されるという結論に達した理由を説明します。

パターン検索への総当たり攻撃アプローチ(第II部): イマージョン
本稿では、引き続き総当たり攻撃アプローチについて説明します。改良されたアプリケーションの新バージョンを使用して、パターンをより良く説明を試みます。また、さまざまな時間間隔と時間枠を使用して、安定性の違いの特定も試みます。


定義済みリスクおよびRRレシオに基づく半自動化ドラッグドロップExpert Advisor連携構築
すべての取引を自動で行うトレーダーもいれば、複数インディケータのアウトプットを基にして自動と手動のミックスで取引を実行するトレーダーもいます。後者のグループの一員として、私はリスクと利益をチャートから直接、動的に評価するための連携ツールが必要でした。本稿は、定義済みの資本リスクおよびR/Rレシオを連携する半自動化Expert Advisorを実装する方法を提供します。EA パネル実行中には、 Expert Advisor リスク、R/R、ロットサイズ パラメータが変更可能です。


MetaTrader 4へのシグナル提供者としてのMetaTrader 5利用
MetaTrader 4での実行結果をMetaTrader 5 プラットフォームにおいてトレーディング分析する方法の分析と例本稿では MetaTrader 5でシンプルなシグナルプロバイダーの作成方法とそれを複数クライアント、動作中の MetaTrader 4にも連携する方法を示します。またみなさんの MetaTrader 4 実アカウントにおいて自動売買チャンピオンシップの出場者をフォローする方法を見つけ出します。


特定のディストリビューション法によるカスタムシンボルを用いた時系列モデリング
この記事では、カスタムシンボルを作成および操作するためのターミナルの機能の概要を示し、カスタムシンボル、トレンド、さまざまなチャートパターンを使用してトレードヒストリーをシミュレートするための手法を提供します。

相対的活力指数による取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法についての連載の新しい記事へようこそ。今回は、相対的活力指数(RVI、Relative Vigot Index)という指標で、その方法を学びます。


MetaTrader マーケットの概要(インフォグラフィック)
数週間前「フリーランス」サービスのインフォグラフィックを公表しました。また「マーケット」の統計をいくつか明らかにすることを約束しました。ここでわれわれが収集したデータの検討にみなさんをご招待します。


自己適応アルゴリズム(第IV部):その他の機能とテスト
引き続き、必要最小限の機能でアルゴリズムを実装して結果をテストします。収益性は非常に低いですが、連載では、完全に自動化された、根本的に異なる市場で取引される完全に異なる商品で収益性の高い取引モデルを示しています。

ニューラルネットワークが簡単に(第27部):DQN (Deep Q-Learning)
強化学習の研究を続けます。今回は、「Deep Q-Learning」という手法に触れてみましょう。この手法を用いることで、DeepMindチームはアタリ社のコンピューターゲームのプレイで人間を凌駕するモデルを作成することができました。取引上の問題を解決するための技術の可能性を評価するのに役立つと思います。

ニューラルネットワークが簡単に(第43回):報酬関数なしでスキルを習得する
強化学習の問題は、報酬関数を定義する必要性にあります。それは複雑であったり、形式化するのが難しかったりします。この問題に対処するため、明確な報酬関数を持たずにスキルを学習する、活動ベースや環境ベースのアプローチが研究されています。

MQL5取引ツールキット(第2回):ポジション管理EX5ライブラリの拡張と実装
MQL5コードやプロジェクトでEX5ライブラリをインポートして使用する方法をご紹介します。今回は、既存のライブラリにポジション管理関数を追加し、2つのエキスパートアドバイザー(EA)を作成することで、EX5ライブラリを拡張します。最初の例では、可変指数ダイナミック平均(VIDyA: Variable Index Dynamic Average)テクニカル指標を使用して、トレーリングストップ取引戦略EAを開発し、2番目の例では、取引パネルを使用して、ポジションの監視、オープン、クローズ、および修正をおこないます。この2つの例では、アップグレードされたEX5ポジション管理ライブラリの使用方法と実装方法を紹介します。

MQL5における修正グリッドヘッジEA(第2部):シンプルなグリッドEAを作る
この記事では、MQL5のエキスパートアドバイザー(EA)を使用した自動化について詳しく説明し、初期のバックテスト結果を分析します。この戦略には高い保有能力が必要であることを強調し、今後の回で距離、takeProfit、ロットサイズなどの主要パラメータを最適化する計画を概説します。本連載は、取引戦略の効率性と異なる市場環境への適応性を高めることを目的としています。

MQL5入門(第8回):初心者のためのEA構築ガイド(II)
この記事では、MQL5フォーラムでよく見られる初心者からの質問を取り上げ、実践的な解決策を紹介します。売買やローソク足の価格取得、取引限度額の設定、取引期間や利益/損失の閾値の管理といった基本的なタスクを自動売買で実行する方法を学びます。MQL5でのこれらの概念の理解と実装を強化するため、ステップごとのガイダンスも提供します。

単一チャート上の複数インジケータ(第05部):MetaTrader 5をRADシステムに変える(I)
プログラミングはできなくても創造性に富んだ素晴らしいアイデアを持っている人はたくさんいます。しかし、プログラミングの知識がないため、これらのアイデアを実行に移すことができないのです。MetaTrader5のプラットフォームそのものをIDEのように使って、Chart Tradeを作成する方法を一緒に見てみましょう。

VIDYAによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法を学ぶ連載の新しい記事へようこそ。この新しい記事では、新しいテクニカルツールについて学び、VIDYA(Variable Index Dynamic Average、可変インデックス動的平均)テクニカル指標によって取引システムを設計する方法を学びます。

独自のLLMをEAに統合する(第2部):環境展開例
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。


リニアなトレーディングシステムを指数に高める
本稿では MQL5 プログラマーの中級者にリニアなトレーディングシステム(固定ロット)からいわゆる指数の技術を簡単に実装することでより収益を上げる方法をお伝えします。これは結果として生じる資金曲線の成長が幾何学的または指数関数で放物線の形を取ります。特にラルフ・ビンス氏によって開発された実用的な「固定比率」のポジションサイジングの MQL5 のバリアントを実装します。

ニューラルネットワークが簡単に(第94回):入力シーケンスの最適化
時系列を扱うときは、常にソースデータを履歴シーケンスで使用します。しかし、これが最善の選択肢なのでしょうか。入力データの順序を変更すると、訓練されたモデルの効率が向上するという意見があります。この記事では、入力シーケンスを最適化する方法の1つを紹介します。


プロフィット引き出しモデル構築のためのTesterWithdrawal() 関数の使用
本稿は処理中に資産の特定部分の引き出しをするトレードシステムにおけるリスク見積をするためのTesterWithDrawal()関数使用について述べていきます。また、ストラテジーテスタにおける資産の引き出し計算のアルゴリズムへのこの関数の影響についても述べます。この関数はExpert Advisorsのパラメータ最適化に有用です。