市場力学をマスターする:支持&抵抗戦略エキスパートアドバイザー(EA)の作成
支持&抵抗戦略に基づく自動売買アルゴリズム開発のための包括的ガイドです。MQL5でEAを作成し、MetaTrader 5でテストするための、価格帯行動の分析からリスク管理までのあらゆる側面に関する詳細情報が含まれます。
MQL5取引ツールキット(第2回):ポジション管理EX5ライブラリの拡張と実装
MQL5コードやプロジェクトでEX5ライブラリをインポートして使用する方法をご紹介します。今回は、既存のライブラリにポジション管理関数を追加し、2つのエキスパートアドバイザー(EA)を作成することで、EX5ライブラリを拡張します。最初の例では、可変指数ダイナミック平均(VIDyA: Variable Index Dynamic Average)テクニカル指標を使用して、トレーリングストップ取引戦略EAを開発し、2番目の例では、取引パネルを使用して、ポジションの監視、オープン、クローズ、および修正をおこないます。この2つの例では、アップグレードされたEX5ポジション管理ライブラリの使用方法と実装方法を紹介します。
MQL5 エキスパートアドバイザーから、GSMモデムを使用する
現在、トレーディングのアカウントを監視する手段がたくさんあります:モバイルターミナルはICQを用い、プッシュ通知を行います。しかし、すべてインターネットの接続を必要とします。この記事は、特に呼び出しやテキストメッセージはできるが、モバイルのインターネットを使用できないような時にトレーディングターミナルの情報を取得できるようになるエキスパートアドバイザーを作成するプロセスを紹介します。
高度なリサンプリングと総当たり攻撃によるCatBoostモデルの選択
本稿では、モデルの一般化可能性を向上させることを目的としたデータ変換への可能なアプローチの1つについて説明し、CatBoostモデルの抽出と選択についても説明します。
MQL5入門(第8回):初心者のためのEA構築ガイド(II)
この記事では、MQL5フォーラムでよく見られる初心者からの質問を取り上げ、実践的な解決策を紹介します。売買やローソク足の価格取得、取引限度額の設定、取引期間や利益/損失の閾値の管理といった基本的なタスクを自動売買で実行する方法を学びます。MQL5でのこれらの概念の理解と実装を強化するため、ステップごとのガイダンスも提供します。
データサイエンスと機械学習(第06回):勾配降下法
勾配降下法は、ニューラルネットワークや多くの機械学習アルゴリズムの訓練において重要な役割を果たします。これは、その印象的な成果にもかかわらず、迅速でインテリジェントなアルゴリズムであり、多くのデータサイエンティストによっていまだに誤解されています。
古いトレンドトレーディング戦略の再検討:2つのストキャスティクス、MAとフィボナッチ
古い取引戦略。この記事では、純粋にテクニカルな方法でトレンドをフォローするための戦略の1つを紹介します。これは純粋なテクニカル戦略で、シグナルとターゲットを出すためにいくつかのテクニカル指標とツールを使用します。戦略の構成要素は次の通りです。14期間のストキャスティクス、5期間のストキャスティクス、200期間の移動平均線、フィボナッチ予測ツール(目標設定用)。
ニューラルネットワークが簡単に(第17部):次元削減
今回は、人工知能モデルについて引き続き説明します。具体的には、教師なし学習アルゴリズムについて学びます。クラスタリングアルゴリズムの1つについては既に説明しました。今回は、次元削減に関連する問題を解決する方法のバリエーションを紹介します。
アプリケーションを使用してMQL5の関数を理解する
関数はどのプログラミング言語においても重要なものです。関数は、開発者が同じことを繰り返さないことを意味するDRY (Do not Repeat Yourself)の概念を適用するのに役立つなどの多くのメリットを提供します。この記事では、関数に関する詳細情報と、物事を複雑にすることなく取引システムを強化するために、あらゆるシステムで使用または呼び出しできる簡単なアプリケーションを作成して、MQL5で独自の関数を作成する方法について説明します。
トレード戦略の統計的実行
望まない価格動向からオープンなポジティブスワップポジションを統計的に保護するアルゴリズム。本稿は、オープンポジションの方向とは逆に動く価格の潜在的リスクを補うことができるキャリートレード保護戦略のバリアントを取り上げています。
パラボリックSARによる取引システムの設計方法を学ぶ
最も人気のある指標を使用して取引システムを設計する方法についての連載を続けます。この記事では、パラボリックSAR指標について詳しく説明し、いくつかの簡単な戦略を使用してMetaTrader 5で使用する取引システムを設計する方法を学びます。
VIDYAによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法を学ぶ連載の新しい記事へようこそ。この新しい記事では、新しいテクニカルツールについて学び、VIDYA(Variable Index Dynamic Average、可変インデックス動的平均)テクニカル指標によって取引システムを設計する方法を学びます。
CCIによる取引システムの設計方法を学ぶ
今回は、取引システムの設計方法を学ぶ連載の新しい記事として、CCI(商品チャンネル指数、Commodities Channel Index)を紹介し、その詳細を説明し、この指標に基づいた取引システムの作り方を紹介します。
パターンと例(第I部): マルチトップ
これは、アルゴリズム取引の枠組みにおける反転パターンに関連する連載の最初の記事です。まず、最も興味深いパターンファミリーから始めます。これは、ダブルトップパターンとダブルボトムパターンに由来するものです。
データサイエンスと機械学習(第02回):ロジスティック回帰
データ分類は、アルゴトレーダーとプログラマーにとって非常に重要なものです。この記事では、「はい」と「いいえ」、上と下、買いと売りを識別するのに役立つ可能性のある分類ロジスティックアルゴリズムの1つに焦点を当てます。
時系列マイニング用データラベル(第3回):ラベルデータの利用例
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、いくつかの時系列のラベル付け方法を紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
MQL5.comのフリーランスのお仕事 - 開発者のお気に入りの場所
トレーディングシステムの開発者は、エキスパートアドバイザーを必要とするトレーダーに彼らのサービスをマーケティングする必要はありません - 彼らが探してくれるのです。すでに、何千ものトレーダーがMQL5のフリーランス開発者に注文を頼み、MQL5.comにて作業に支払いを行っています。4年間、このサービスは10000以上もの仕事に対して累計3000人のトレーダーが支払えるようにしてきました。そして、トレーダーと開発者の活動は常に拡大しています。
一からの取引エキスパートアドバイザーの開発(第18部):新規受注システム(I)
今回は新規受注システムの第一弾です。本連載で紹介し始めてから、このEAは、同じチャート上注文システムモデルを維持しながら様々な変更と改良を受けてきました。
トレードにおけるOLAPの適用(パート1):多次元データのオンライン分析
この記事では、多次元データ(OLAP)のオンライン分析のフレームワークを作成する方法、およびMQLで実装する方法、およびトレード口座ヒストリー処理の例を使用してMetaTrader環境でそのような分析を適用する方法について説明します。
ニューラルネットワークが簡単に(第83回):「Conformer」Spatio-Temporal Continuous Attention Transformerアルゴリズム
この記事では、天気予報を目的に開発されたConformerアルゴリズムについて紹介します。天気の変動性や予測の難しさは、金融市場の動きとしばしば比較されます。Conformerは、Attentionモデルと常微分方程式の利点を組み合わせた高度な手法です。
自己適応アルゴリズム(第III部):最適化の放棄
履歴データに基づく最適化を使用してパラメータを選択する場合、真に安定したアルゴリズムを取得することは不可能です。安定したアルゴリズムは、常時、どんな取引商品で作業していても、必要なパラメータを認識している必要があります。予測や推測ではなく、確実に知っているべきです。
ソーシャルテクノロジースタートアップの構築 パート1: MetaTrader 5 シグナルをツイートする
今日は MetaTrader 5 ターミナルを Twitter とリンクする方法を学習し、EA のトレードシグナルをツイートできるようにします。RESTful ウェブサービスに基づく PHP にソーシャルディシジョン支援システムを作成します。この考えはコンピュータ援用取引と呼ばれる自動トレーディングの特定の概念からきています。われわれは 別の方法でExpert Advisors によって自動でマーケットに出されるトレードシグナルをフィルターにかける人間のトレーダーの認知能力を欲しています。
価格 Correlationの統計データを基にしたシグナルのフィルタリング
過去の価格変動と将来のトレンドの間に関連はあるのでしょうか?前日の値動き特性が本日繰り返されるのはなぜでしょうか?価格変動予想に統計は有用でしょうか?答えはあり、それはポジティブなものです。もしお疑いならこの記事はそんな方向けです。MQL5のシステムでトレーディングシステム向けの作業フィルター作成方法をお話します。それは価格変動の興味深いパターンを表します。
MetaTrader5でカスタム MOEX シンボルを作成およびテストする方法
この記事では、MQL5 言語を使用したカスタム交換シンボルの作成について説明します。 特に、人気の Finam ウェブサイトからの為替相場を使用します。 この記事で考えられるもう1つのオプションは、カスタムシンボルの作成に使用するテキストファイルを任意の形式で動作させる方法です。 これにより、任意の財務銘柄とデータソースを操作できるようになります。 カスタムシンボルを作成した後、MetaTrader5 ストラテジーテスターのすべての関数を使用して、交換ツールのトレードアルゴリズムをテストすることができます。
定義済みリスクおよびRRレシオに基づく半自動化ドラッグドロップExpert Advisor連携構築
すべての取引を自動で行うトレーダーもいれば、複数インディケータのアウトプットを基にして自動と手動のミックスで取引を実行するトレーダーもいます。後者のグループの一員として、私はリスクと利益をチャートから直接、動的に評価するための連携ツールが必要でした。本稿は、定義済みの資本リスクおよびR/Rレシオを連携する半自動化Expert Advisorを実装する方法を提供します。EA パネル実行中には、 Expert Advisor リスク、R/R、ロットサイズ パラメータが変更可能です。
パターン検索への総当たり攻撃アプローチ(第II部): イマージョン
本稿では、引き続き総当たり攻撃アプローチについて説明します。改良されたアプリケーションの新バージョンを使用して、パターンをより良く説明を試みます。また、さまざまな時間間隔と時間枠を使用して、安定性の違いの特定も試みます。
スワップ(第I部):ロックと合成ポジション
この記事では、スワップ取引手法の古典的な概念を拡張しようとします。私が、この概念に特別な注意を払う価値があり、この概念が研究に絶対的に推奨されるという結論に達した理由を説明します。
MQL5の圏論(第22回):移動平均の別の見方
この記事では、最も一般的で、おそらく最も理解しやすい指標を1つだけ取り上げて、連載で扱った概念の説明の簡略化を試みます。移動平均です。そうすることで、垂直的自然変換の意義と可能な応用について考えます。
MQL5における修正グリッドヘッジEA(第2部):シンプルなグリッドEAを作る
この記事では、MQL5のエキスパートアドバイザー(EA)を使用した自動化について詳しく説明し、初期のバックテスト結果を分析します。この戦略には高い保有能力が必要であることを強調し、今後の回で距離、takeProfit、ロットサイズなどの主要パラメータを最適化する計画を概説します。本連載は、取引戦略の効率性と異なる市場環境への適応性を高めることを目的としています。
DoEasyライブラリでのその他のクラス(第66部): MQL5.comシグナルコレクションクラス
本稿では、シグナルを管理する関数を備えたMQL5.comシグナルサービスのシグナルコレクションクラスを作成します。さらに、DOMの売買取引高の合計を表示するように板情報スナップショットオブジェクトクラスを改善します。
MetaTrader 4へのシグナル提供者としてのMetaTrader 5利用
MetaTrader 4での実行結果をMetaTrader 5 プラットフォームにおいてトレーディング分析する方法の分析と例本稿では MetaTrader 5でシンプルなシグナルプロバイダーの作成方法とそれを複数クライアント、動作中の MetaTrader 4にも連携する方法を示します。またみなさんの MetaTrader 4 実アカウントにおいて自動売買チャンピオンシップの出場者をフォローする方法を見つけ出します。
相対的活力指数による取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法についての連載の新しい記事へようこそ。今回は、相対的活力指数(RVI、Relative Vigot Index)という指標で、その方法を学びます。
MQLプロジェクトでJSON Data APIを使用する
MetaTraderにはないデータを使用できることを想像してみてください。価格分析とテクニカル分析による指標からデータを得るだけです。取引力を一段と高めるデータにアクセスできることを想像してみてください。APIデータを通して他のソフトウェア、マクロ分析手法、超高度ツールの出力をMetaTraderを通じてミックスすれば、MetaTraderソフトウェアのパワーを倍増させることができます。この記事では、APIの使い方を教え、便利で価値のあるAPIデータサービスを紹介します。
MQL5用スキャルピングオーダーフロー
このMetaTrader 5エキスパートアドバイザー(EA)は、高度なリスク管理を備えたスキャルピングオーダーフロー戦略を実装しています。複数のテクニカル指標を使用し、オーダーフローの不均衡に基づいて取引機会を特定します。バックテストは潜在的な収益性を示しているが、特にリスク管理と取引結果の比率において、さらなる最適化の必要性を強調しています。経験豊富なトレーダーに適していますが、本番運用の前に十分なテストと理解が必要です。
チャイキンオシレーター(Chaikin Oscillator)による取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標に基づいて取引システムを設計する方法を学ぶための連載の新しい記事にようこそ。この新しい記事を通して、チャイキンオシレーター指標による取引システムを設計する方法を学びます。
MQL5入門(第9回):MQL5のオブジェクトの理解と使用
現在のデータと履歴データを使用して、MQL5でチャートオブジェクトを作成およびカスタマイズする方法を学びます。このプロジェクトベースのガイドは、取引を可視化し、MQL5の概念を実際に適用するのに役立ち、取引のニーズに合わせたツールの構築が容易になります。
MQL5入門(第6部):MQL5における配列関数の入門ガイド (II)
MQL5の旅の次の段階を始めましょう。この洞察に満ちて初心者に優しい記事では、残りの配列関数について調べ、複雑な概念を解明し、効率的な取引戦略を作成できるようにします。ArrayPrint、ArrayInsert、ArraySize、ArrayRange、ArrarRemove、ArraySwap、ArrayReverse、ArraySortについて説明します。アルゴリズム取引の専門知識を、これらの必要不可欠な配列関数で高めてください。一緒にMQL5マスターへの道を歩みましょう。
特定のディストリビューション法によるカスタムシンボルを用いた時系列モデリング
この記事では、カスタムシンボルを作成および操作するためのターミナルの機能の概要を示し、カスタムシンボル、トレンド、さまざまなチャートパターンを使用してトレードヒストリーをシミュレートするための手法を提供します。
ニューラルネットワークが簡単に(第27部):DQN (Deep Q-Learning)
強化学習の研究を続けます。今回は、「Deep Q-Learning」という手法に触れてみましょう。この手法を用いることで、DeepMindチームはアタリ社のコンピューターゲームのプレイで人間を凌駕するモデルを作成することができました。取引上の問題を解決するための技術の可能性を評価するのに役立つと思います。