MQL5言語での自動売買ロボットのプログラミングと使用に関する記事

icon

MetaTraderプラットフォームのために作られたExpert Advisorsは、開発者により導入された様々な機能を実行します。自動売買ロボットは1日24時間、通貨をトラックし、取引をコピーし、レポートを送信し、ニュースを分析し、 特別に作成されたグラフィカルインターフェイスを提供することができます。

記事はプログラミングのテクニック、データ処理のための数学的なアイデア、自動売買ロボットの開発と発注についてのヒントを記載します。

新しい記事を追加
最新 | ベスト
ベイズ分類器及び特異スペクトル解析法に基づく指標を用いた市場動向の予測
ベイズ分類器及び特異スペクトル解析法に基づく指標を用いた市場動向の予測

ベイズ分類器及び特異スペクトル解析法に基づく指標を用いた市場動向の予測

本稿では、ベイズの定理に基づいた特異スペクトル解析(SSA)と重要な機械学習法の予測機能を組み合わせて、時間効率の良い取引のための推奨システムを構築するというイデオロギーと方法論について検討します。
の処理 トレードイベント in Expert Advisor を使って OnTrade() 関数
の処理 トレードイベント in Expert Advisor を使って OnTrade() 関数

の処理 トレードイベント in Expert Advisor を使って OnTrade() 関数

MQL5は様々なタイプのイベント (タイマーイベント、トレードイベント、カスタムイベントなど)を含め、非常に多くの革新をもたらしました。イベントを取り扱う性能で全く新しいタイプの自動・準自動の売買プログラムを作成できます。本記事ではトレードイベントを考え、トレードイベントを処理するOnTrade() 関数のコードを書きます。
preview
PythonとMetaTrader5 Pythonパッケージを使用した深層学習による予測と注文とONNXモデルファイル

PythonとMetaTrader5 Pythonパッケージを使用した深層学習による予測と注文とONNXモデルファイル

このプロジェクトでは、金融市場における深層学習に基づく予測にPythonを使用します。平均絶対誤差(MAE)、平均二乗誤差(MSE)、R二乗(R2)などの主要なメトリクスを使用してモデルのパフォーマンスをテストする複雑さを探求し、すべてを実行ファイルにまとめる方法を学びます。また、そのEAでONNXモデルファイルを作成します。
クロスプラットフォームEA: タイムフィルタ
クロスプラットフォームEA: タイムフィルタ

クロスプラットフォームEA: タイムフィルタ

この記事では、クロスプラットフォームEAによるさまざまな時間フィルタリングメソッドの実装について説明します。 時間フィルタクラスは、特定の時間が一定の時間構成設定に該当するかどうかをチェックします。
preview
MQL5で日付と時刻を扱う方法を学ぶ

MQL5で日付と時刻を扱う方法を学ぶ

日付と時刻の取り扱いという、新しい重要なトピックについての新しい記事です。トレーダーとして、あるいは取引ツールのプログラマーとして、日付と時間という2つの側面をいかにうまく、効果的に扱うかを理解することは非常に重要です。そこで今回は、効果的な取引ツールを円滑かつシンプルに作成するために、日付と時刻をどのように扱えばよいのか、私ができる範囲で重要な情報をお伝えします。
preview
ニューラルネットワークが簡単に(第11部): GPTについて

ニューラルネットワークが簡単に(第11部): GPTについて

GPT-3は現在存在する言語ニューラルネットワークの中でおそらく最も高度なモデルの1つであり、その最大バリアントには1,750億個のパラメータが含まれています。もちろん、家庭にあるようなPCでそのような怪物を作成するつもりはありませんが、どのアーキテクチャソリューションを作業に使用し、それらからどのように利益を得ることができるかは確認することができます。
ポジション中心のMetaTrader5の環境での注文追跡管理機能付き注文マネージャー
ポジション中心のMetaTrader5の環境での注文追跡管理機能付き注文マネージャー

ポジション中心のMetaTrader5の環境での注文追跡管理機能付き注文マネージャー

このクラスライブラリは、MetaTrader5のエキスパートアドバイザーに追加し、MetaTrader5のポジション中心のアプローチと比べ、MetaTrader4と類似したオーダー中心のアプローチに書き換えることができます。各ポジションの保護のために、ブローカーによるストップを維持する一方、MetaTrader5のターミナルにて注文を管理することで、上記を実現します。
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第18部): 口座オブジェクトとその他のライブラリオブジェクトの相互作用
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第18部): 口座オブジェクトとその他のライブラリオブジェクトの相互作用

MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第18部): 口座オブジェクトとその他のライブラリオブジェクトの相互作用

本稿では、口座オブジェクトの作業をすべてのライブラリオブジェクトの新しい基本オブジェクトに配置します。また、CBaseObj基本オブジェクトを改善し、追跡パラメータの設定とライブラリオブジェクトイベント受信をテストします。
セマフォインディケーターを使った簡単なトレーディングシステム
セマフォインディケーターを使った簡単なトレーディングシステム

セマフォインディケーターを使った簡単なトレーディングシステム

複雑なトレーディングシステムも、よく見てみると複数の簡単な取引シグナルに基づいていることがわかります。ですから、開発の初心者はすぐに複雑なアルゴリズムを書き始める必要はありません。この記事ではセマフォインディケーターを使って取引を行うトレーディングシステムの例を紹介します。
クロスプラットフォームEA: シグナル
クロスプラットフォームEA: シグナル

クロスプラットフォームEA: シグナル

この記事では、クロスプラットフォームEAで使用される CSignal および CSignals クラスについて解説します。 MQL4 と MQL5 の違いについて、トレードシグナルの評価に必要なデータがどのようにアクセスされるかを調べ、記述されたコードが両方のコンパイラと互換性があることを確認します。
グラフィカルインタフェ-スを備えたエキスパ-トアドバイザ:パネルの作成(第1部)
グラフィカルインタフェ-スを備えたエキスパ-トアドバイザ:パネルの作成(第1部)

グラフィカルインタフェ-スを備えたエキスパ-トアドバイザ:パネルの作成(第1部)

多くのトレーダーが依然として手作業を好むという事実にもかかわらず、ここではルーティンで行う作業の自動化を完全に避けることはできないでしょう。この記事では、手動取引のためのマルチシンボルシグナルエキスパートアドバイザーの作成例を示します。
クロスプラットフォームEA:オーダー
クロスプラットフォームEA:オーダー

クロスプラットフォームEA:オーダー

MT4とMT5は、トレードリクエストで異なるルールを使用しています。この記事では、トレードプラットフォームとバージョンにかかわらず、クロスプラットフォームEAとして稼働する、クラスオブジェクトを使用します。
DIY マルチスレッド非同期 MQL5 WebRequest
DIY マルチスレッド非同期 MQL5 WebRequest

DIY マルチスレッド非同期 MQL5 WebRequest

この記事では、MQL5 での HTTPリクエストの処理効率を高めることができるライブラリについて説明します。 非ブロッキングモードでの WebRequest の実行は、補助チャートとEAを使用してカスタムイベントを交換し、共有リソースを読み取る追加のスレッドで実装されます。 ソースコードも同様に適用されます。
ジグザグの力(第二部)データの受け取り、処理、表示の例
ジグザグの力(第二部)データの受け取り、処理、表示の例

ジグザグの力(第二部)データの受け取り、処理、表示の例

本稿の最初の部分では、変更されたジグザグ指標と、そのタイプの指標のデータを受け取るためのクラスについて説明しました。ここでは、これらのツールに基づいて指標を開発する方法を示し、ジグザグ指標によって形成されたシグナルに従って取引を行うことを特徴とするテスト用のEAを作成します。さらに、本稿ではグラフィカルユーザインタフェースを開発するためのEasyAndFastライブラリの新しいバージョンを紹介します。
クロスプラットフォームEA: カスタムストップ、ブレイクイーブン、トレーリング
クロスプラットフォームEA: カスタムストップ、ブレイクイーブン、トレーリング

クロスプラットフォームEA: カスタムストップ、ブレイクイーブン、トレーリング

この記事では、クロスプラットフォームEAでのカスタムストップレベルの設定方法について説明します。 また、時間の経過とともにストップレベルを設定するメソッドについても説明します。
一からの取引エキスパートアドバイザーの開発
一からの取引エキスパートアドバイザーの開発

一からの取引エキスパートアドバイザーの開発

この記事では、最小限のプログラミングで自動売買ロボットを開発する方法について説明します。
preview
MQL5での発注を理解する

MQL5での発注を理解する

取引システムを構築する際には、効果的に処理しなければならない作業があります。この作業は、注文の発注、または作成された取引システムに注文を自動的に処理させることです。これはあらゆる取引システムにおいて極めて重要だからです。この記事では、発注が効果的な取引システムを作成する作業のために理解する必要があるほとんどのトピックについて説明します。
preview
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第1回):ADXとパラボリックSARの組み合わせによる指標シグナル

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第1回):ADXとパラボリックSARの組み合わせによる指標シグナル

この記事で紹介する多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートから複数の銘柄ペアの取引(新規注文、決済注文、注文の管理など)を行うことができるEA(自動売買ロボット)です。
Expert Advisorの限界と検証
Expert Advisorの限界と検証

Expert Advisorの限界と検証

このシンボルは月曜ににトレードできる? ポジションをオープンするのに必要なお金が十分ある? ストップロスが起こった時ロスの大きさは? ペンディングオーダーの数を制限するには? トレード操作が実行されたのは現在のバーそれとも以前のバー? トレードロボットがこの種の検証をできない場合、どんなトレードストラテジーも負け戦略になる可能性があります。本記事はどんなExpert Advisorにおいても便利な検証例を紹介します。
ディープニューラルネットワーク(その4)ニューラルネットワークモデルの作成、訓練、テスト
ディープニューラルネットワーク(その4)ニューラルネットワークモデルの作成、訓練、テスト

ディープニューラルネットワーク(その4)ニューラルネットワークモデルの作成、訓練、テスト

本稿では、darchパッケージ(v.0.12.0)の新しい機能について考察し、異なるデータタイプ、構造及び訓練シーケンスを有するディープニューラルネットワーク訓練を説明します。訓練結果も含まれています。
クロスプラットフォームEA:MQL5標準ライブラリからコンポーネントの再利用
クロスプラットフォームEA:MQL5標準ライブラリからコンポーネントの再利用

クロスプラットフォームEA:MQL5標準ライブラリからコンポーネントの再利用

クロスプラットフォームEAはMQL4に有用であり、MQL5標準ライブラリ内に一部コンポーネントが存在します。 この記事では、MQL4コンパイラと互換性のあるMQL5標準ライブラリの特定コンポーネントを作るメソッドを取り扱います。
MQL5 ウィザードの NRTR に基づく NRTR インジケーターとトレーディングモジュール
MQL5 ウィザードの NRTR に基づく NRTR インジケーターとトレーディングモジュール

MQL5 ウィザードの NRTR に基づく NRTR インジケーターとトレーディングモジュール

この記事では、NRTR インジケーターを分析し、このインジケーターに基づいてトレードシステムを作成します。 追加のトレンド確認インジケーターと NRTR の組み合わせに基づいて戦略を作成する際に使用することができるトレードシグナルのモジュールを開発します。
MQL5ウィザード:新バージョン
MQL5ウィザード:新バージョン

MQL5ウィザード:新バージョン

本稿では、最新のMQL5ウィザードで利用できる新しい特徴について述べます。シグナルのアーキテクチャが変更され、さまざまなマーケットパターンにもどつくトレーディングロボットを作成することができるようになっています。本稿に含まれる例では、エキスパートアドバイザのインタラクティブな作成手順を説明しています。
取引き履歴に基づくトレーディングのプレーヤー
取引き履歴に基づくトレーディングのプレーヤー

取引き履歴に基づくトレーディングのプレーヤー

トレーディングのプレーヤーたったこれだけの短い言葉です。説明は必要ありませんね。ボタンのある小さな箱が心に浮かびます。ボタンを1つ押すと再現します。レバーを動かすと再現スピードが変化します。それとても似ています。本稿では、ほとんどリアルタイムでトレード履歴を再現するプログラムを紹介したいと思います。本稿はOOPの意味、インディケータとの連携、チャート管理についてもいくらか取り上げます。
preview
ニューラルネットワークが簡単に(第10回): Multi-Head Attention

ニューラルネットワークが簡単に(第10回): Multi-Head Attention

ニューラルネットワークにおける自己注意のメカニズムについては、以前に検討しました。実際には、最新のニューラルネットワークアーキテクチャは、いくつかの並列した自己注意スレッドを使用して、シーケンスの要素間のさまざまな依存関係を見つけます。このようなアプローチの実装を検討し、ネットワーク全体のパフォーマンスへの影響を評価しましょう。
重回帰分析ストラテジージェネレータ兼ストラテジーテスタ
重回帰分析ストラテジージェネレータ兼ストラテジーテスタ

重回帰分析ストラテジージェネレータ兼ストラテジーテスタ

本稿ではトレーディングシステム開発のために重回帰分析を利用する方法を述べます。戦略検索自動化のための回帰分析の利用法を示します。例としてプログラミングに高い技能を要求せず作成され統合される回帰式を提供します。
メタトレーダー5のカスタムニュースフィードを作成する
メタトレーダー5のカスタムニュースフィードを作成する

メタトレーダー5のカスタムニュースフィードを作成する

この記事では、ニュースの種類とまたその情報元の面でより多くのオプションを提供しています。柔軟なニュースフィードを作成する汎用性を考察します。 この記事では、web API を MetaTrader5 ターミナルと統合する方法について説明します。
ディープニューラルネットワーク(その5)DNNハイパーパラメータのベイズ最適化
ディープニューラルネットワーク(その5)DNNハイパーパラメータのベイズ最適化

ディープニューラルネットワーク(その5)DNNハイパーパラメータのベイズ最適化

本稿では、様々な訓練の変形によって得られたディープニューラルネットワークのハイパーパラメータにベイズ最適化を適用する可能性について検討します。様々な訓練の変形における最適なハイパーパラメータを有するDNNの分類の質が比較されます。DNN最適ハイパーパラメータの有効性の深さは、フォワードテストで確認されています。分類の質を向上させるための方向性が特定されています。
クロスプラットフォームEA:序章
クロスプラットフォームEA:序章

クロスプラットフォームEA:序章

この記事では、クロスプラットフォームのEAを容易に開発できるメソッドを詳述します。提案メソッドは、両方のバージョンによって共有関数を統合し、互換性のない関数の派生クラスを分割します。
preview
MQL5入門(第7回):MQL5でEAを構築し、AI生成コードを活用するための初心者ガイド

MQL5入門(第7回):MQL5でEAを構築し、AI生成コードを活用するための初心者ガイド

この記事は、MQL5でエキスパートアドバイザー(EA)を構築するための包括的な、究極の初心者ガイドです。擬似コードを使用してEAを構築し、AIが生成したコードのパワーを活用する方法をステップごとに学びましょう。アルゴリズム取引が初めての方にも、スキルアップを目指す方にも、このガイドは効果的なEAを作成するための明確な道筋を提供します。
preview
カスタムシンボル。実用的な基礎

カスタムシンボル。実用的な基礎

この記事では、クオートを表示するための一般的な方法を示すために、カスタムシンボルプログラムの生成を行います。 派生したカスタムシンボルチャートから実際のシンボルをトレードするためのEAにおける提案された亜種についても説明します。 この記事にはMQLのソースコードが添付されています。
MetaTrader 5での複数銘柄残高グラフ
MetaTrader 5での複数銘柄残高グラフ

MetaTrader 5での複数銘柄残高グラフ

本稿では、グラフィカルインターフェイスに最後のテスト結果に基づいた複数銘柄の残高グラフと預金損失率グラフを備えたMQLアプリケーションの例を示します。
初心者のためのMQL5:グラフィックオブジェクトのアンチバンダルプロテクト
初心者のためのMQL5:グラフィックオブジェクトのアンチバンダルプロテクト

初心者のためのMQL5:グラフィックオブジェクトのアンチバンダルプロテクト

グラフィックコントロールパネルが削除されたり、他の誰かによって変更されている場合、プログラムに対し、何をすべきか?この記事では、チャート上の「オーナーレス」オブジェクトを処理します。アプリケーションが削除された後に、プログラムで作成されたオブジェクトが残っている場合の処理を行います。
EAのリモートコントロールの方法
EAのリモートコントロールの方法

EAのリモートコントロールの方法

トレーディングロボットの主な利点は、リモートの VPS サーバー上で24時間動作できることです。 しかし、時にはサーバーに直接アクセスすることができず、タスクに介入する必要があります。 EAをリモートで管理することは可能でしょうか。 この記事では、外部コマンドを使用してEAを制御するオプションの1つを提案します。
OpenCL を使用したローソク足パターンのテスト
OpenCL を使用したローソク足パターンのテスト

OpenCL を使用したローソク足パターンのテスト

この記事では、OpenCL ローソク足パターンテスターを "1 分 OHLC " モードで実装するアルゴリズムについて説明します。 また、高速かつ低速の最適化モードで起動したビルトインストラテジーテスターとの速度を比較します。
RSIによる取引システムの設計方法を学ぶ
RSIによる取引システムの設計方法を学ぶ

RSIによる取引システムの設計方法を学ぶ

今回は、取引の世界で最も人気があり、一般的に使用されている指標の1つであるRSIを紹介します。この指標を使用した取引システムの設計方法を学びます。
さまざまな移動平均システムを設計する方法を学ぶ
さまざまな移動平均システムを設計する方法を学ぶ

さまざまな移動平均システムを設計する方法を学ぶ

この記事の主題である移動平均自体を使用する場合でも、任意のストラテジーに基づいて生成されたシグナルをフィルタリングするために使用できるストラテジーはたくさんあります。この記事の目的は、移動平均ストラテジーのいくつかと、アルゴリズム取引システムを設計する方法を共有することです。
preview
PythonやRの知識が不要なYandexのCatBoost機械学習アルゴリズム

PythonやRの知識が不要なYandexのCatBoost機械学習アルゴリズム

この記事では、具体的な例を用いて、機械学習プロセスのコードと主要な段階の説明をします。 このモデルを取得するためには、PythonやRの知識は必要ありません。 さらに、MQL5の基本的な知識があれば十分です - まさに私のレベルです。 したがって、この記事が、機械学習の評価やプログラムへの実装に興味のある人たちの手助けとなり、幅広い人たちの良いチュートリアルとなることを期待しています。
preview
自動で動くEAを作る(第04回):手動トリガー(I)

自動で動くEAを作る(第04回):手動トリガー(I)

今日は、自動モードでシンプルかつ安全に動作するエキスパートアドバイザー(EA)を作成する方法を紹介します。
preview
フィボナッチによる取引システムの設計方法を学ぶ

フィボナッチによる取引システムの設計方法を学ぶ

最も人気のあるテクニカル指標を使用して取引システムを設計する方法についての連載を続けます。今回の新しいテクニカルツールはフィボナッチです。このテクニカル指標に基づいて取引システムを設計する方法を学びます。