MQL5言語での自動売買ロボットのプログラミングと使用に関する記事

icon

MetaTraderプラットフォームのために作られたExpert Advisorsは、開発者により導入された様々な機能を実行します。自動売買ロボットは1日24時間、通貨をトラックし、取引をコピーし、レポートを送信し、ニュースを分析し、 特別に作成されたグラフィカルインターフェイスを提供することができます。

記事はプログラミングのテクニック、データ処理のための数学的なアイデア、自動売買ロボットの開発と発注についてのヒントを記載します。

新しい記事を追加
最新 | ベスト
preview
ニューラルネットワークの実験(第4回):テンプレート

ニューラルネットワークの実験(第4回):テンプレート

この記事では、実験と非標準的な方法を使用して収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。ニューラルネットワークを取引に活用するための自給自足ツールとしてMetaTrader 5を使用します。簡単に説明します。
preview
MetaTraderのMultibot:1つのチャートから複数のロボットを起動させる

MetaTraderのMultibot:1つのチャートから複数のロボットを起動させる

今回は、個々のチャートにロボットの各インスタンスを設定する必要がなく、1つのチャートにのみ接続された状態で複数のチャートで使用できる汎用MetaTraderロボットを作成するための簡単なテンプレートについて考えてみます。
preview
EAを用いたリスクとキャピタルの管理

EAを用いたリスクとキャピタルの管理

この記事では、バックテストレポートでは見えないこと、自動売買ソフトを使用する際の注意点、エキスパートアドバイザー(EA)を使用している場合の資金管理、自動売買をおこなっている場合に取引活動を続けるために大きな損失をカバーする方法について説明します。
preview
MQL5入門(第4部):構造体、クラス、時間関数をマスターする

MQL5入門(第4部):構造体、クラス、時間関数をマスターする

最新記事でMQL5プログラミングの秘密を解き明かしましょう。構造体、クラス、時間関数の本質に迫り、コーディングの旅に力を与えます。初心者から経験豊富な開発者まで、個のガイドは、MQL5をマスターするための貴重な洞察を提供し、複雑な概念を簡素化します。プログラミングのスキルを高め、アルゴリズム取引の世界で一歩先を行きましょう。
preview
ニューラルネットワークが簡単に(第53回):報酬の分解

ニューラルネットワークが簡単に(第53回):報酬の分解

報酬関数を正しく選択することの重要性については、すでに何度かお話ししました。報酬関数は、個々の行動に報酬またはペナルティを追加することでエージェントの望ましい行動を刺激するために使用されます。しかし、エージェントによる信号の解読については未解決のままです。この記事では、訓練されたエージェントに個々のシグナルを送信するという観点からの報酬分解について説明します。
preview
MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ

MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ

この記事では、MQL5のネイティブMQTTクライアント開発における最初の試みについて報告します。MQTTは、クライアントサーバーのパブリッシュ/サブスクライブメッセージングトランスポートプロトコルです。MQTTは軽量、オープン、シンプルで、簡単に実装できるように設計されています。これらの特性により、さまざまな状況での使用に最適です。
preview
一からの取引エキスパートアドバイザーの開発(第9部):概念的な飛躍(II)

一からの取引エキスパートアドバイザーの開発(第9部):概念的な飛躍(II)

この記事では、Chart Tradeをフローティングウィンドウに配置します。前稿では、フローティングウィンドウ内でテンプレートを使用できるようにする基本的なシステムを作成しました。
preview
MFIによる取引システムの設計方法を学ぶ

MFIによる取引システムの設計方法を学ぶ

最も人気のあるテクニカル指標に基づいて取引システムを設計する連載のこの新しい記事では、新しくマネーフローインデックス(Money Flow Index、MFI)テクニカル指標を考察します。その詳細を学び、MQL5によって簡単な取引システムを開発し、MetaTrader 5で実行します。
preview
一からの取引エキスパートアドバイザーの開発(第20部):新規受注システム(III)

一からの取引エキスパートアドバイザーの開発(第20部):新規受注システム(III)

新しい受注システムの導入を継続します。このようなシステムを作るには、MQL5を使いこなすだけでなく、MetaTrader 5プラットフォームが実際にどのように機能し、どのようなリソースを提供しているかを理解することが必要です。
preview
一からの取引エキスパートアドバイザーの開発(第26部):未来に向かって(I)

一からの取引エキスパートアドバイザーの開発(第26部):未来に向かって(I)

今日は、発注システムを次のレベルに引き上げます。ただしその前に、いくつかの問題を解決する必要があります。ここで、どのように働きたいか、取引日に何をするかに関連するいくつかの質問があります。
preview
MQL5入門(第5部):MQL5における配列関数の入門ガイド

MQL5入門(第5部):MQL5における配列関数の入門ガイド

全くの初心者のために作られた第5部では、MQL5配列の世界を探検してみましょう。この記事は、複雑なコーディングの概念を簡素化し、明快さと包括性に重点を置いています。質問が受け入れられ、知識が共有される、学習者のコミュニティに仲間入りしてください。
preview
知っておくべきMQL5ウィザードのテクニック(第42回):ADXオシレーター

知っておくべきMQL5ウィザードのテクニック(第42回):ADXオシレーター

ADXは、一部のトレーダーが一般的なトレンドの強さを測定するために使用する、もう1つの比較的人気のあるテクニカルインジケーターです。これは他の2つのインジケーターの組み合わせとして機能し、オシレーターとして表示されます。この記事では、MQL5ウィザードアセンブリとそのサポートクラスを使用して、そのパターンについて説明します。
preview
MQL5の圏論(第20回):セルフアテンションとTransformerへの回り道

MQL5の圏論(第20回):セルフアテンションとTransformerへの回り道

ちょっと寄り道して、chatGPTのアルゴリズムの一部について考えてみたいとおもいます。自然変換から借用した類似点や概念はあるのでしょうか。シグナルクラス形式のコードを用いて、これらの疑問やその他の質問に楽しく答えようと思います。
preview
独自のLLMをEAに統合する(第4部):GPUを使った独自のLLMの訓練

独自のLLMをEAに統合する(第4部):GPUを使った独自のLLMの訓練

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
知っておくべきMQL5ウィザードのテクニック(第12回):ニュートン多項式

知っておくべきMQL5ウィザードのテクニック(第12回):ニュートン多項式

ニュートン多項式は、数点の集合から二次方程式を作るもので、時系列を見るには古風だが興味深いアプローチです。この記事では、このアプローチをトレーダーがどのような面で役立てることができるかを探るとともに、その限界についても触れてみたいと思います。
preview
MQL5入門(第3部):MQL5のコア要素をマスターする

MQL5入門(第3部):MQL5のコア要素をマスターする

この初心者向けの記事では、MQL5プログラミングの基本を解説します。配列、カスタム関数、プリプロセッサ、イベント処理など、すべてのコードをわかりやすく説明し、すべての行にアクセスできるようにします。すべてのステップで理解を深める独自のアプローチで、MQL5のパワーを引き出しましょう。この記事はMQL5をマスターするための基礎となるもので、各コード行の説明に重点を置き、明確で充実した学習体験を提供します。
preview
MQL5取引ツールキット(第1回):ポジション管理EX5ライブラリ

MQL5取引ツールキット(第1回):ポジション管理EX5ライブラリ

MQL5で様々なポジション操作を管理するための開発者用ツールキットの作成方法をご紹介します。この記事では、MQL5でポジション管理タスクを処理する際に発生するさまざまなエラーの自動処理とレポートも含め、簡単なものから高度なものまでポジション管理操作を実行する関数ライブラリ(ex5)の作成方法を紹介します。
preview
DoEasyライブラリの時系列(第56部):カスタム指標オブジェクト、コレクション内指標オブジェクトからのデータ取得

DoEasyライブラリの時系列(第56部):カスタム指標オブジェクト、コレクション内指標オブジェクトからのデータ取得

本稿では、EAで使用するためのカスタム指標オブジェクトの作成について検討します。ライブラリクラスを少し改善し、EAの指標オブジェクトからデータを取得するメソッドを追加しましょう。
preview
MQL5の圏論(第17回):関手とモノイド

MQL5の圏論(第17回):関手とモノイド

関手を題材にしたシリーズの最終回となる今回は、圏としてのモノイドを再考します。この連載ですでに紹介したモノイドは、多層パーセプトロンとともに、ポジションサイジングの補助に使われます。
preview
古典的な戦略をPythonで再構築する(第2回):ボリンジャーバンドのブレイクアウト

古典的な戦略をPythonで再構築する(第2回):ボリンジャーバンドのブレイクアウト

本稿では、線形判別分析(LDA: Linear Discriminant Analysis)とボリンジャーバンドを統合し、戦略的市場参入シグナルの生成を目的としたカテゴリ別ゾーン予測を活用する取引戦略を考察します。
DoEasyライブラリのグラフィックス(第73部): グラフィック要素のフォームオブジェクト
DoEasyライブラリのグラフィックス(第73部): グラフィック要素のフォームオブジェクト

DoEasyライブラリのグラフィックス(第73部): グラフィック要素のフォームオブジェクト

本稿からは、ライブラリでのグラフィックの使用に関する新しい大きなセクションを始めます。本稿では、マウスステータスオブジェクト、すべてのグラフィック要素の基本オブジェクト、およびライブラリのグラフィック要素のフォームオブジェクトのクラスを作成します。
preview
一からの取引エキスパートアドバイザーの開発(第25部):システムの堅牢性の提供(II)

一からの取引エキスパートアドバイザーの開発(第25部):システムの堅牢性の提供(II)

この記事では、エキスパートアドバイザー(EA)のパフォーマンスを仕上げます。長くなるのでご準備ください。EAを信頼できるものにするために、まず取引システムの一部でないコードをすべて削除します。
preview
ニューラルネットワークの実験(第1回):幾何学の再検討

ニューラルネットワークの実験(第1回):幾何学の再検討

この記事では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。
preview
Pythonを使用したEA用ディープラーニングONNXモデルの季節性フィルタと期間

Pythonを使用したEA用ディープラーニングONNXモデルの季節性フィルタと期間

Pythonでディープラーニングのモデルを作成する際、季節性から恩恵を受けることはできるのでしょうか。ONNXモデルのデータをフィルタすることでより良い結果が得られるのでしょうか。どの期間を使用するべきでしょうか。この記事では、これらすべてを取り上げます。
preview
ニューラルネットワークが簡単に(第35回):ICM(Intrinsic Curiosity Module、内発的好奇心モジュール)

ニューラルネットワークが簡単に(第35回):ICM(Intrinsic Curiosity Module、内発的好奇心モジュール)

強化学習アルゴリズムの研究を続けます。これまで検討してきたすべてのアルゴリズムでは、あるシステム状態から別の状態への遷移ごとに、エージェントがそれぞれの行動を評価できるようにするための報酬方策を作成する必要がありました。しかし、この方法はかなり人工的なものです。実際には、行動と報酬の間には、ある程度の時間差があります。今回は、行動から報酬までの様々な時間の遅れを扱うことができるモデル訓練アルゴリズムに触れてみましょう。
preview
MQL5でボリンジャーバンド取引戦略を実装する:ステップごとのガイド

MQL5でボリンジャーバンド取引戦略を実装する:ステップごとのガイド

ボリンジャーバンド売買戦略に基づくMQL5での自動売買アルゴリズム実装のためのステップごとのガイドです。トレーダーに役立つEAの作成に基づく詳細なチュートリアルです。
preview
一からの取引エキスパートアドバイザーの開発(第17部):Web上のデータにアクセスする(III)

一からの取引エキスパートアドバイザーの開発(第17部):Web上のデータにアクセスする(III)

今回は、Webからデータを取得し、エキスパートアドバイザー(EA)で使用する方法について引き続き考えていきます。今回は、代用できるシステムの開発に進みます。
preview
ソフトウェア開発とMQL5におけるデザインパターン(第4回):振る舞いパターン2

ソフトウェア開発とMQL5におけるデザインパターン(第4回):振る舞いパターン2

デザインパターンには、生成デザインパターン、構造デザインパターン、振る舞いデザインパターンの3タイプがあることを説明しました。コードをクリーンにしながらオブジェクト間の相互作用の方法を設定するのに役立つ、残りの振る舞いタイプのパターンの説明を完成させます。
preview
独自のLLMをEAに統合する(第5部):LLMs(II)-LoRA-チューニングによる取引戦略の開発とテスト

独自のLLMをEAに統合する(第5部):LLMs(II)-LoRA-チューニングによる取引戦略の開発とテスト

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニング(微調整)し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
Rebuyのアルゴリズム:多通貨取引シミュレーション

Rebuyのアルゴリズム:多通貨取引シミュレーション

本稿では、多通貨の価格設定をシミュレートする数理モデルを作成し、前回理論計算から始めた取引効率を高めるメカニズム探求の一環として、分散原理の研究を完成させます。
preview
一からの取引エキスパートアドバイザーの開発(第27部):未来に向かって(II)

一からの取引エキスパートアドバイザーの開発(第27部):未来に向かって(II)

チャート上直接の発注システムをより完全にしましょう。この記事では、発注システムを修正する方法、またはより直感的にする方法を示します。
preview
ニューラルネットワークが簡単に(第47回):連続行動空間

ニューラルネットワークが簡単に(第47回):連続行動空間

この記事では、エージェントのタスクの範囲を拡大します。訓練の過程には、どのような取引戦略にも不可欠な資金管理とリスク管理の側面も含まれます。
preview
知っておくべきMQL5ウィザードのテクニック(第07回):樹状図

知っておくべきMQL5ウィザードのテクニック(第07回):樹状図

分析や予測を目的としたデータの分類は、機械学習の中でも非常に多様な分野であり、数多くのアプローチや手法があります。この作品では、そのようなアプローチのひとつである「凝集型階層分類」を取り上げます。
preview
モスクワ取引所(MOEX)におけるストップ注文を利用した取引所グリッド取引の自動化

モスクワ取引所(MOEX)におけるストップ注文を利用した取引所グリッド取引の自動化

本稿では、MQL5エキスパートアドバイザー(EA)に実装されたストップ指値注文に基づくグリッド取引についてモスクワ取引所(MOEX)で考察します。市場で取引する場合、最も単純な戦略の1つは、市場価格を「キャッチ」するように設計された注文のグリッドです。
preview
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第2回):指標シグナル:多時間枠放物線SAR指標

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第2回):指標シグナル:多時間枠放物線SAR指標

この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。今回は、PERIOD_M15からPERIOD_D1までの多時間枠でパラボリックSARまたはiSARという1つの指標のみを使用します。
preview
時系列マイニングのためのデータラベル(第2回):Pythonを使ってトレンドマーカー付きデータセットを作成する

時系列マイニングのためのデータラベル(第2回):Pythonを使ってトレンドマーカー付きデータセットを作成する

この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、いくつかの時系列のラベル付け方法を紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
preview
取引における道徳的期待値

取引における道徳的期待値

この記事は、道徳的期待値についてです。取引でのその使用のいくつかの例と、その助けを借りて達成できる結果を見ていきます。
preview
自動で動くEAを作る(第13回):自動化(V)

自動で動くEAを作る(第13回):自動化(V)

フローチャートとは何かご存じでしょうか。使い方はご存じですか。フローチャートは初心者向けだとお考えでしょうか。この新しい記事では、フローチャートの操作方法を説明します。
preview
ニューラルネットワークが簡単に(第31部):進化的アルゴリズム

ニューラルネットワークが簡単に(第31部):進化的アルゴリズム

前回の記事では、非勾配最適化手法の調査を開始しました。遺伝的アルゴリズムについて学びました。今日は、このトピックを継続し、進化的アルゴリズムの別のクラスを検討します。
preview
ニューラルネットワークが簡単に(第20部):オートエンコーダ

ニューラルネットワークが簡単に(第20部):オートエンコーダ

教師なし学習アルゴリズムの研究を続けます。読者の中には、最近の記事とニューラルネットワークの話題の関連性について疑問を持つ人もいるかもしれません。この新しい記事では、ニューラルネットワークの研究に戻ります。