ニューラルネットワークが簡単に(第29部):Advantage Actor-Criticアルゴリズム
本連載のこれまでの記事で、2つの強化学習アルゴリズムを見てきました。それぞれに長所と短所があります。このような場合ではよくあることですが、次に、2つの方法の良いところを組み合わせてアルゴリズムにすることが考え出されます。そうすれば、それぞれの欠点が補われることになります。今回は、そのような手法の1つを紹介します。
自動で動くEAを作る(第12回):自動化(IV)
自動化されたシステムをシンプルだと思う方はおそらく、それを作るために必要なことを十分に理解していないのでしょう。今回は、多くのエキスパートアドバイザー(EA)を死に至らしめる問題点についてお話します。この問題を解決するために、無差別に注文をトリガーすることが考えられます。
時系列マイニングのためのデータラベル(第6回):ONNXを使用したEAへの応用とテスト
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
一からの取引エキスパートアドバイザーの開発(第22部):新規受注システム(V)
今日は、新しい受注システムの開発を進めていきます。新しいシステムを導入するのはそう簡単なことではありません。プロセスが非常に複雑になるような問題がしばしば発生します。このような問題が発生したときは、一度立ち止まって、自分たちの進むべき方向を再分析しなければなりません。
独自のLLMをEAに統合する(第3部):CPUを使った独自のLLMの訓練
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
MFIによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標に基づいて取引システムを設計する連載のこの新しい記事では、新しくマネーフローインデックス(Money Flow Index、MFI)テクニカル指標を考察します。その詳細を学び、MQL5によって簡単な取引システムを開発し、MetaTrader 5で実行します。
PythonとMQL5を使用した取引戦略の自動パラメータ最適化
取引戦略とパラメータを自己最適化するアルゴリズムには、いくつかの種類があります。これらのアルゴリズムは、過去と現在の市場データに基づいて取引戦略を自動的に改善するために使用されます。この記事では、そのうちの1つをpythonとMQL5の例で見ていきます。
ウィリアムズPRによる取引システムの設計方法を学ぶ
MetaTrader 5で使用される最も人気のあるテクニカル指標によってMQL5で取引システムを設計する方法を学ぶ連載の新しい記事です。今回は、ウィリアムズの%R指標による取引システムの設計方法について学びます。
ビデオ:MetaTrader5とMQL5での簡単な自動売買の設定方法
このビデオコースでは、MetaTrader 5をダウンロード、インストールして自動売買のために設定する方法を学びます。また、チャートの設定や自動売買のオプションの調整方法についても学びます。最初のバックテストをおこないます。このコースの終わりには、画面の前に座らなくても、24時間365日自動的に取引できるエキスパートアドバイザー(EA)をインポートする方法が分かります。
MetaTraderのMultibot:1つのチャートから複数のロボットを起動させる
今回は、個々のチャートにロボットの各インスタンスを設定する必要がなく、1つのチャートにのみ接続された状態で複数のチャートで使用できる汎用MetaTraderロボットを作成するための簡単なテンプレートについて考えてみます。
ニューラルネットワークが簡単に(第16部):クラスタリングの実用化
前回は、データのクラスタリングをおこなうためのクラスを作成しました。今回は、得られた結果を実際の取引に応用するためのバリエーションを紹介したいと思います。
EAを用いたリスクとキャピタルの管理
この記事では、バックテストレポートでは見えないこと、自動売買ソフトを使用する際の注意点、エキスパートアドバイザー(EA)を使用している場合の資金管理、自動売買をおこなっている場合に取引活動を続けるために大きな損失をカバーする方法について説明します。
一からの取引エキスパートアドバイザーの開発(第29部):おしゃべりプラットフォーム
この記事では、MetaTrader 5プラットフォームをしゃべらせる方法を学びます。EAをもっと楽しくしたらどうでしょうか。金融市場の取引は退屈で単調すぎることがよくありますが、私たちはこの仕事の疲れを軽減することができます。依存症などの問題を経験している方にとってはこのプロジェクトは危険な場合があるのでご注意ください。ただし、一般的には、それは退屈を軽減するだけです。
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第4回):三角移動平均 — 指標シグナル
この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。今回は、多時間枠または単一時間枠の「三角移動平均」という1つの指標のみを使用します。
知っておくべきMQL5ウィザードのテクニック(第42回):ADXオシレーター
ADXは、一部のトレーダーが一般的なトレンドの強さを測定するために使用する、もう1つの比較的人気のあるテクニカルインジケーターです。これは他の2つのインジケーターの組み合わせとして機能し、オシレーターとして表示されます。この記事では、MQL5ウィザードアセンブリとそのサポートクラスを使用して、そのパターンについて説明します。
古典的な戦略をPythonで再構築する(第2回):ボリンジャーバンドのブレイクアウト
本稿では、線形判別分析(LDA: Linear Discriminant Analysis)とボリンジャーバンドを統合し、戦略的市場参入シグナルの生成を目的としたカテゴリ別ゾーン予測を活用する取引戦略を考察します。
MQL5のインタラクティブGUIで取引チャートを改善する(第2回):移動可能なGUI (II)
MQL5で移動可能なGUIを作成するための詳細なガイドで、取引戦略やユーティリティでの動的なデータ表現の可能性を引き出しましょう。オブジェクト指向プログラミングの基本原理を理解し、同じチャート上に単一または複数の移動可能なGUIを簡単かつ効率的に設計実装する方法を発見してください。
DoEasyライブラリの時系列(第59部): 単一ティックのデータを格納するオブジェクト
本稿からは、価格データを処理するライブラリ機能を作成します。今日、さらに別のティックで到着したすべての価格データを格納するオブジェクトクラスを作成します。
ニューラルネットワークが簡単に(第38回):不一致による自己監視型探索
強化学習における重要な問題のひとつは、環境探索です。前回までに、「内因性好奇心」に基づく研究方法について見てきました。今日は別のアルゴリズムを見てみましょう。不一致による探求です。
MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ
この記事では、MQL5のネイティブMQTTクライアント開発における最初の試みについて報告します。MQTTは、クライアントサーバーのパブリッシュ/サブスクライブメッセージングトランスポートプロトコルです。MQTTは軽量、オープン、シンプルで、簡単に実装できるように設計されています。これらの特性により、さまざまな状況での使用に最適です。
一からの取引エキスパートアドバイザーの開発(第23部):新規受注システム(IV)
受注システムをより柔軟にします。ここでは、コードをより柔軟にする変更を検討して、ポジションストップレベルをより迅速に変更できるようにします。
独自のLLMをEAに統合する(第5部):LLMs(II)-LoRA-チューニングによる取引戦略の開発とテスト
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニング(微調整)し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
ダイナミックマルチペアEAの形成(第1回):通貨相関と逆相関
ダイナミックマルチペアEAは、相関戦略と逆相関戦略の両方を活用し、取引パフォーマンスの最適化を図ります。リアルタイムの市場データを分析することで、通貨ペア間の相関関係や逆相関関係を特定し、それらを取引に活かします。
ニューラルネットワークが簡単に(第35回):ICM(Intrinsic Curiosity Module、内発的好奇心モジュール)
強化学習アルゴリズムの研究を続けます。これまで検討してきたすべてのアルゴリズムでは、あるシステム状態から別の状態への遷移ごとに、エージェントがそれぞれの行動を評価できるようにするための報酬方策を作成する必要がありました。しかし、この方法はかなり人工的なものです。実際には、行動と報酬の間には、ある程度の時間差があります。今回は、行動から報酬までの様々な時間の遅れを扱うことができるモデル訓練アルゴリズムに触れてみましょう。
Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第2回):ボタンの応答性の追加
この記事では、ボタンの応答性を有効にすることで、静的なMQL5ダッシュボードパネルをインタラクティブなツールへと変換することに焦点を当てます。GUIコンポーネントの機能を自動化し、ユーザーのクリックに適切に反応する方法を探究します。この記事の最後には、ユーザーのエンゲージメントと取引体験を向上させる動的なインターフェイスを構築します。
自動で動くEAを作る(第14回):自動化(VI)
今回は、この連載で得た知識をすべて実践してみましょう。最終的には、100%自動化された機能的なシステムを構築します。しかしその前に、まだ最後の詳細を学ばなければなりません。
ニューラルネットワークが簡単に(第15部):MQL5によるデータクラスタリング
クラスタリング法について引き続き検討します。今回は、最も一般的なk-meansクラスタリング手法の1つを実装するために、新しいCKmeansクラスを作成します。テスト中には約500のパターンを識別することができました。
時系列マイニングのためのデータラベル(第5回):ソケットを使用したEAへの応用とテスト
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
確率最適化と最適制御の例
SMOC(Stochastic Model Optimal Controlの略と思われる)と名付けられたこのエキスパートアドバイザー(EA)は、MetaTrader 5用の高度なアルゴリズム取引システムのシンプルな例です。テクニカル指標、モデル予測制御、動的リスク管理を組み合わせて取引判断をおこないます。このEAには、適応パラメーター、ボラティリティに基づくポジションサイジング、トレンド分析が組み込まれており、さまざまな市場環境においてパフォーマンスを最適化します。
MQL5における修正グリッドヘッジEA(第1部):シンプルなヘッジEAを作る
古典的なグリッド戦略と古典的なヘッジ戦略を混合した、より高度なグリッドヘッジEAのベースとして、シンプルなヘッジEAを作成する予定です。この記事が終わるころには、簡単なヘッジ戦略の作り方がわかり、この戦略が本当に100%儲かるかどうかについての人々の意見も知ることができるでしょう。
ニューラルネットワークが簡単に(第63回):Unsupervised Pretraining for Decision Transformer (PDT)
引き続き、Decision Transformer法のファミリーについて説明します。前回の記事から、これらの手法のアーキテクチャの基礎となるTransformerの訓練はかなり複雑なタスクであり、訓練のために大規模なラベル付きデータセットが必要であることにすでに気づきました。この記事では、ラベル付けされていない軌跡をモデルの予備訓練に使用するアルゴリズムについて見ていきます。
Pythonを使用したEA用ディープラーニングONNXモデルの季節性フィルタと期間
Pythonでディープラーニングのモデルを作成する際、季節性から恩恵を受けることはできるのでしょうか。ONNXモデルのデータをフィルタすることでより良い結果が得られるのでしょうか。どの期間を使用するべきでしょうか。この記事では、これらすべてを取り上げます。
ニューラルネットワークが簡単に(第53回):報酬の分解
報酬関数を正しく選択することの重要性については、すでに何度かお話ししました。報酬関数は、個々の行動に報酬またはペナルティを追加することでエージェントの望ましい行動を刺激するために使用されます。しかし、エージェントによる信号の解読については未解決のままです。この記事では、訓練されたエージェントに個々のシグナルを送信するという観点からの報酬分解について説明します。
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第2回):指標シグナル:多時間枠放物線SAR指標
この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。今回は、PERIOD_M15からPERIOD_D1までの多時間枠でパラボリックSARまたはiSARという1つの指標のみを使用します。
一からの取引エキスパートアドバイザーの開発(第20部):新規受注システム(III)
新しい受注システムの導入を継続します。このようなシステムを作るには、MQL5を使いこなすだけでなく、MetaTrader 5プラットフォームが実際にどのように機能し、どのようなリソースを提供しているかを理解することが必要です。
一からの取引エキスパートアドバイザーの開発(第9部):概念的な飛躍(II)
この記事では、Chart Tradeをフローティングウィンドウに配置します。前稿では、フローティングウィンドウ内でテンプレートを使用できるようにする基本的なシステムを作成しました。
時系列マイニングのためのデータラベル(第2回):Pythonを使ってトレンドマーカー付きデータセットを作成する
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、いくつかの時系列のラベル付け方法を紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
多通貨エキスパートアドバイザーの開発(第1回):複数取引戦略の連携
取引戦略にはさまざまなものがあります。リスクを分散し、取引結果の安定性を高めるためには、複数の戦略を並行して適用することが有効かもしれません。ただし、それぞれのストラテジーが個別のエキスパートアドバイザー(EA)として実装されている場合、1つの取引口座でそれらの作業を管理することは非常に難しくなります。この問題を解決するのに合理的なのは、1つのEAで異なる取引戦略の運用を実装することです。
一からの取引エキスパートアドバイザーの開発(第26部):未来に向かって(I)
今日は、発注システムを次のレベルに引き上げます。ただしその前に、いくつかの問題を解決する必要があります。ここで、どのように働きたいか、取引日に何をするかに関連するいくつかの質問があります。